

Dingo

Dingo (Deep Inference for Gravitational-wave Observations) is a Python program for analyzing gravitational wave data using neural posterior
estimation. It dramatically speeds up inference of astrophysical source parameters from
data measured at gravitational-wave observatories. Dingo aims to enable the routine
use of the most advanced theoretical models in analysing data, to make rapid predictions
for multi-messenger counterparts, and to do so in the context of sensitive detectors with
high event rates.

The basic approach of Dingo is to train a neural network to represent the Bayesian
posterior, conditioned on data. This enables amortized inference: when new data are
observed, they can be plugged in and results obtained in a small amount of time. Tasks
handled by Dingo include

	building training datasets;

	training normalizing flows to estimate the posterior density;

	performing inference on real or simulated data; and

	verifying and correcting model results using importance sampling.

As training a network from scratch can be expensive, we intend to also distribute trained networks that can be used directly for inference. These can be used with dingo_pipe to automate analysis of gravitational wave events.

Getting started

	Installation

	Overview

	Quickstart tutorial

Examples

	Toy Example

	NPE Model (production)

	GNPE model (production)

	Inference on an injection

Advanced guide

	Introduction to neural posterior estimation

	Code design

	Generating waveforms

	Building a waveform dataset

	Data pre-processing

	Detector noise

	Neural network architecture

	Training

	Inference

	GNPE

	The Result class

	dingo_pipe

API

	dingo

References

Dingo is based on a series of papers developing neural posterior estimation for gravitational waves, starting from proof of concept [1], to inclusion of all 15 parameters and analysis of real data [2], noise conditioning and full amortization [3], and group-equivariant NPE [4]. Dingo results are augmented with importance sampling in [5]. Finally, training with forecasted noise (needed for training prior to an observing run) is described in [6].

[1]
Stephen R. Green, Christine Simpson, and Jonathan Gair. Gravitational-wave parameter estimation with autoregressive neural network flows. Phys. Rev. D, 102:104057, 2020. arXiv:2002.07656 [https://arxiv.org/abs/2002.07656], doi:10.1103/PhysRevD.102.104057 [https://doi.org/10.1103/PhysRevD.102.104057].

[2]
Stephen R. Green and Jonathan Gair. Complete parameter inference for GW150914 using deep learning. Mach. Learn. Sci. Tech., 2(3):03LT01, 2021. arXiv:2008.03312 [https://arxiv.org/abs/2008.03312], doi:10.1088/2632-2153/abfaed [https://doi.org/10.1088/2632-2153/abfaed].

[3]
(1,2)
Maximilian Dax, Stephen R. Green, Jonathan Gair, Jakob H. Macke, Alessandra Buonanno, and Bernhard Schölkopf. Real-Time Gravitational Wave Science with Neural Posterior Estimation. Phys. Rev. Lett., 127(24):241103, 2021. arXiv:2106.12594 [https://arxiv.org/abs/2106.12594], doi:10.1103/PhysRevLett.127.241103 [https://doi.org/10.1103/PhysRevLett.127.241103].

[4]
Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Deistler, Bernhard Schölkopf, and Jakob H. Macke. Group equivariant neural posterior estimation. International Conference on Learning Representations, 2022. arXiv:2111.13139 [https://arxiv.org/abs/2111.13139].

[5]
Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jonas Wildberger, Jakob H. Macke, Alessandra Buonanno, and Bernhard Schölkopf. Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference. 10 2022. arXiv:2210.05686 [https://arxiv.org/abs/2210.05686].

[6]
Jonas Wildberger, Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jakob H. Macke, Alessandra Buonanno, and Bernhard Schölkopf. Adapting to noise distribution shifts in flow-based gravitational-wave inference. 11 2022. arXiv:2211.08801 [https://arxiv.org/abs/2211.08801].

If you use Dingo in your work, we ask that you please cite at least [3].

Contributors to the code are listed in AUTHORS.md [https://github.com/dingo-gw/dingo/blob/main/AUTHORS.md]. We thank Vivien Raymond
and Rory Smith for acting as LIGO-Virgo-KAGRA (LVK) code reviewers. Dingo makes use of
many LVK software tools, including Bilby [https://lscsoft.docs.ligo.org/bilby/],
bilby_pipe [https://lscsoft.docs.ligo.org/bilby_pipe/master/index.html], and
LALSimulation [https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/], as well as third
party tools such as PyTorch [https://pytorch.org] and
nflows [https://github.com/bayesiains/nflows].

Contact

For questions or comments please contact
Maximilian Dax or
Stephen Green.

Indices and tables

	Index

	Module Index

	Search Page

Installation

Standard

Pip

To install using pip, run the following within a suitable virtual environment:

pip install dingo-gw

This will install Dingo as well as all of its requirements, which are listed in
pyproject.toml [https://github.com/dingo-gw/dingo/blob/main/pyproject.toml].

Conda

Dingo is also available from the conda-forge [https://conda-forge.org] repository.
To install using conda, first activate a conda environment, and then run

conda install -c conda-forge dingo-gw

Development

If you would like to make changes to Dingo, or to contribute to its development, you
should install Dingo from source. To do so, first clone this repository:

git clone git@github.com:dingo-gw/dingo.git

Next create a virtual environment for Dingo, e.g.,

python3 -m venv dingo-venv
source dingo-venv/bin/activate

This creates and activates a venv [https://docs.python.org/3/library/venv.html] for Dingo
called dingo-venv. In this virtual environment, install Dingo:

cd dingo
pip install -e ."[dev]"

This command installs an editable version of Dingo, meaning that any changes to the Dingo
source are reflected immediately in the installation. The inclusion of dev installs
extra packages needed for development (code formatting, compiling documentation, etc.)

Documentation

To build the documentation, first generate the API documentation using autodoc [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html]:

cd docs
sphinx-apidoc -o source ../dingo

This will create dingo.*.rst and modules.rst files in source/. These correspond to
the various modules and are constructed from docstrings.

To finally compile the documentation, run

make html

This creates a directory build/ containing HTML documentation. The main index is at build/html/index.html.

To use the autodoc feature, which works for pycharm and numpy docstrings, insert in a .rst file, e.g.,

.. autofunction:: dingo.core.utils.trainutils.write_history`

This will render as

	
dingo.core.utils.trainutils.write_history(log_dir, epoch, train_loss, test_loss, learning_rates, aux=None, filename='history.txt')

	Writes losses and learning rate history to csv file.

	Parameters:

	
	log_dir (str) – directory containing the history file

	epoch (int) – epoch

	train_loss (float) – train_loss of epoch

	test_loss (float) – test_loss of epoch

	learning_rates (list) – list of learning rates in epoch

	aux (list = []) – list of auxiliary information to be logged

	filename (str = 'history.txt') – name of history file

Cleanup

To remove generated docs, execute

make clean
rm source/dingo.* source/modules.rst

Overview

Dingo performs gravitational-wave (GW) parameter estimation using neural posterior estimation. The basic idea is to train a neural network (a normalizing flow) to represent the Bayesian posterior distribution \(p(\theta|d)\) for GW parameters \(\theta\) given observed data \(d\). Training can take some time (typically, a week for a production-level model) but once trained, inference is very fast (just a few seconds).

Basic workflow

The basic workflow for using Dingo is as follows:

	Prepare training data. This consists of pairs of intrinsic parameters and waveform polarizations, as well as noise PSDs. Training parameters are drawn from the prior distribution, and waveforms are simulated using a waveform model.

	Train a model. Build a neural network and simulate data sets (noisy waveforms in detectors). Train the model to infer parameters based on the data.

	Perform inference on new data using the trained model.

In many cases, a user may have downloaded a pre-trained model. If so, there is no need to carry out the first two steps, and one may instead skip to step 3.

Command-line interface

In most cases, we expect Dingo to be called from the command line. Dingo commands begin with the prefix dingo_. There can be a large number of configurations options for many tasks, so in such cases, rather than specify all settings as arguments, Dingo commands take a single YAML or INI file containing all settings. As described in the quickstart tutorial, it is best to begin with settings files provided in the examples/ [https://github.com/dingo-gw/dingo/tree/main/examples] folder, modifying them as necessary.

Summary of commands

Here we provide a list of key user commands along with brief descriptions. The commands for carrying out the main tasks above are

	Command

	Description

	dingo_generate_dataset

	Generate a training dataset of waveform polarizations.

	dingo_generate_ASD_dataset

	Generate a training dataset of detector noise ASDs.

	dingo_train

	Build and train a neural network.

	dingo_pipe

	Perform inference on data (real or simulated), starting from an INI file.

Building a training dataset and training a model can be very expensive tasks. We therefore expect these to be frequently run on clusters, and for this reason provided HTCondor [https://htcondor.readthedocs.io/en/latest/] versions of these commands (note that dingo_pipe is already HTCondor-compatible):

	Command

	Description

	dingo_generate_dataset_dag

	HTCondor version of dingo_generate_dataset.

	dingo_train_condor

	HTCondor version of dingo_train.

Finally, there are several utility commands that are useful for working with Dingo-produced files:

	Command

	Description

	dingo_ls

	Inspect a file produced by Dingo and print a summary.

	dingo_append_training_stage

	Modify the training plan of a model checkpoint.

	dingo_pt_to_hdf5

	Convert a trained Dingo model from a PyTorch pickle .pt file to HDF5.

Hint

The dingo_ls command is very useful for inspecting Dingo files. It will print all settings that went in to producing the file, as well as some derived quantities.

File types

As noted above, most Dingo commands take a YAML file to specify configuration options (except for dingo_pipe, which uses an INI file, as is standard for LVK parameter estimation). When run, these commands generate data, which is usually stored in HDF5 files. One exception is when training a neural network. This saves the network weights using the PyTorch .pt format. However, primarily for LVK use, dingo_pt_to_hdf5 can convert the weights of a trained model to a HDF5 file.

Important

In all cases, Dingo will save the YAML file settings within the final output file. This is needed for downstream tasks and for maintaining reproducibility.

GNPE

A slightly more complicated workflow occurs when using GNPE. GNPE is an algorithm that combines physical symmetries with Gibbs sampling to significantly improve results. When using GNPE, however, it is necessary to train two networks—one main (conditional) network that will be repeatedly sampled during Gibbs sampling and one smaller network used to initialize the Gibbs sampler. At inference time, dingo_pipe must be pointed to both of these networks. See the section on GNPE usage for further details.

Quickstart tutorial

To learn to use Dingo, we recommend starting with the examples provided in the examples/ [https://github.com/dingo-gw/dingo/tree/main/examples]
folder. The YAML files contained in this directory (and subdirectories) contain
configuration settings for the various Dingo tasks (constructing training data, training networks, and performing inference). These files should be provided as input to the
command-line scripts, which then run Dingo and save output files. These output files
contain as metadata the settings in the YAML files, and they may usually be inspected
by running dingo_ls.

 flowchart TB
 dataset_settings[dataset_settings.yaml]
 dataset_settings-->generate_dataset(["dingo_generate_dataset
 #nbsp; #nbsp; --settings_file dataset_settings.yaml
 #nbsp; #nbsp; --out_file waveform_dataset.hdf5"])
 style generate_dataset text-align:left
 asd_settings[asd_dataset_settings.yaml]
 asd_settings-->generate_asd(["generate_asd_dataset
 #nbsp; #nbsp; --settings_file dataset_settings.yaml
 #nbsp; #nbsp; --data_dir asd_dataset"])
 style generate_asd text-align:left
 train_init(["dingo_train
 #nbsp; #nbsp; --settings_file train_settings_init.yaml
 #nbsp; #nbsp; --train_dir model_init"])
 style train_init text-align:left
 train_settings_init[train_settings_init.yaml]
 train_settings_init-->train_init
 generate_dataset--->train_init
 generate_asd--->train_init
 generate_dataset--->train_main(["dingo_train
 #nbsp; #nbsp; --settings_file train_settings_main.yaml
 #nbsp; #nbsp; --train_dir model_main"])
 style train_main text-align:left
 train_settings_main[train_settings_main.yaml]
 generate_asd--->train_main
 train_settings_main-->train_main
 train_init-->inference(["dingo_pipe GW150914.ini"])
 style inference text-align:left
 train_main-->inference
 inference-->samples[GW150914_data0_1126259462-4_sampling.hdf5]

After configuring the settings files, the scripts may be used as follows, assuming the
Dingo venv is active.

Generate training data

Waveforms

To generate a waveform dataset for training, execute

dingo_generate_dataset --settings_file waveform_dataset_settings.yaml --num_processes N --out_file waveform_dataset.hdf5

where N is the number of processes you would like to use to generate the waveforms in
parallel. This saves the dataset of waveform polarizations in the
file waveform_dataset.hdf5 (typically compressed using SVD, depending on configuration).

One can use dingo_generate_dataset_dag to set up a condor DAG for generating waveforms
on a cluster. This is typically useful for slower waveform models.

Noise ASDs

Training also requires a dataset of noise ASDs, which are sampled randomly for each
training sample. To generate this dataset based on noise observed during a run, execute

dingo_generate_ASD_dataset --data_dir data_dir --settings_file asd_dataset_settings.yaml

This will download data from GWOSC [https://www.gw-openscience.org] and create a /tmp directory, in which the
estimated PSDs are stored. Subsequently, these are collected together into a final .hdf5
ASD dataset.
If no settings_file is passed, the script will attempt to use the default
one data_dir/asd_dataset_settings.yaml.

Training

With a waveform dataset and ASD dataset(s), one can train a neural network. Configure
the train_settings.yaml file to point to these datasets, and run

dingo_train --settings_file train_settings.yaml --train_dir train_dir

This will configure the network, train it, and store checkpoints, a record of the history,
and the final network in the directory train_dir. Alternatively, to resume training from
a checkpoint file, run

dingo_train --checkpoint model.pt --train_dir train_dir

If using CUDA on a machine with several GPUs, be sure to first select the desired GPU
number using the CUDA_VISIBLE_DEVICES environment variable. If using a cluster, Dingo
can be trained using dingo_train_condor.

Example training files can be found under examples/training.
train_settings_toy.yaml and train_settings_production.yaml train a flow to
estimate the full posterior of the event conditioned on the time of coalescence
in the detectors. The “toy” label is to indicate this should NOT be used for production but
rather to get a feel for the Dingo pipeline. The production settings contain tested
settings. Note that depending on the waveform model and event, these may need to occasionally
be tuned. train_settings_init_toy.yaml and train_settings_init_production.yaml train
flows to estimate the time of coalescence in the individual detectors. These two
networks are needed to use GNPE. This is the preferred and
most tested way of using Dingo.

Alternatively, the train_settings_no_gnpe_toy.yaml and
train_settings_no_gnpe_production.yaml contain settings to train a network
without the GNPE step. Note the lack of a data/gnpe_time_shifts option. While this is not
recommended for production, it is still pedagogically useful and is good for prototyping
new ideas or doing a less expensive training.

Inference

Once a Dingo model is trained, inference for real events can be performed using
dingo_pipe. There are 3 main inference steps, downloading the data,
running Dingo on this data and finally running importance sampling. The basic
idea is to create a .ini file which contains the filepaths of the Dingo networks
trained above and the segment of data to analyze. An example .ini file can be
found under examples/pipe/GW150914.ini.

To do inference, cd into the directory with the .ini file and run

dingo_pipe GW150914.ini

 Toy Example

Toy Example

The goal of the following tutorial is to take a user from start to finish analyzing GW150914 using dingo.

Caution

This is only a toy example which is useful for testing on a local machine. This
is NOT meant be used for production gravitational wave analyses.

There are 4 main steps:

	Generate the waveform dataset

	Generate the ASD dataset

	Train the network

	Do inference

In this tutorial as well as the npe model and gnpe model the following file structure will
be employed

toy_npe_model/

 # config files
 waveform_dataset_settings.yaml
 asd_dataset_settings.yaml
 train_settings.yaml
 GW150914.ini

 training_data/
 waveform_dataset.hdf5
 asd_dataset/ # Contains the asd_dataset.hdf5 and also temp files for asd generation

 training/
 model_050.pt
 model_stage_0.pt
 model_latest.pt
 history.txt
 # etc...

 outdir_GW150914/
 # dingo_pipe output

The config files which are the only ones which need to be edited are contained in the top level directory. In the next
few sections these config files will be explained. To download sample config files, please visit
https://github.com/dingo-gw/dingo/tree/main/examples. In this tutorial the toy_npe_model folder will be used.

Step 1 Generating a waveform dataset

After downloading the files for the tutorial first run

cd toy_npe_model/
mkdir training_data
mkdir training

to set up the file structure. Then run

dingo_generate_dataset --settings waveform_dataset_settings.yaml --out_file training_data/waveform_dataset.hdf5

which will create a
dingo.gw.waveform_generator.waveform_generator.WaveformGenerator
object and store it at the location provided with --out_file. For convenience,
here is the waveform dataset file

domain:
type: FrequencyDomain
f_min: 20.0
f_max: 1024.0
delta_f: 0.25 # Expressions like 1.0/8.0 would require eval and are not supported

waveform_generator:
approximant: IMRPhenomD
f_ref: 20.0
f_start: 15.0 # Optional setting useful for EOB waveforms. Overrides f_min when generating waveforms.

Dataset only samples over intrinsic parameters. Extrinsic parameters are chosen at train time.
intrinsic_prior:
mass_1: bilby.core.prior.Constraint(minimum=10.0, maximum=80.0)
mass_2: bilby.core.prior.Constraint(minimum=10.0, maximum=80.0)
chirp_mass: bilby.gw.prior.UniformInComponentsChirpMass(minimum=15.0, maximum=100.0)
mass_ratio: bilby.gw.prior.UniformInComponentsMassRatio(minimum=0.125, maximum=1.0)
phase: default
chi_1: bilby.gw.prior.AlignedSpin(name='chi_1', a_prior=Uniform(minimum=0, maximum=0.9))
chi_2: bilby.gw.prior.AlignedSpin(name='chi_2', a_prior=Uniform(minimum=0, maximum=0.9))
theta_jn: default
Reference values for fixed (extrinsic) parameters. These are needed to generate a waveform.
luminosity_distance: 100.0 # Mpc
geocent_time: 0.0 # s

Dataset size
num_samples: 10000

compression: None

The file waveform_dataset_settings.yaml contains four
sections: domain, waveform_generator, intrinsic_prior, and compression. The
domain section defines the settings for storing the waveform. Note the type
attribute; this does not refer to the native domain of the waveform model, but
rather to the internal dingo.gw.domains.Domain class. This allows the use
of time domain waveform models, which are transformed into Fourier domain before
being passed to the network. Currently, only
the dingo.gw.domains.FrequencyDomain class is supported for training the
network. It is sometimes advisable to generate waveforms with a higher f_max and then
truncate them at a lower f_max for training due to issues with generating short waveforms
for some of the waveform models implemented in LALSuite’s LALSimulation package
(https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/).

The waveform_generator section specifies the approximant attribute.
At present any waveform model, aka approximant, that is callable through LALSimulation’s
SimInspiralFD API can be used to generate waveforms for dingo via the
dingo.gw.waveform_generator.waveform_generator.WaveformGenerator module (see
generating_waveforms).

The intrinsic_prior section is based on Bilby’s prior module.
Default values can be found in dingo.gw.prior.
Two priors to note are the chirp_mass and mass_ratio, whose minimum values are set
to 15.0 and 0.125, respectively. Extending these priors towards lower chirp masses
or more extreme mass-ratios may lead to poor performance of the embedding network and normalizing
flow during training and would require changes to the network setup.
Note that the luminosity_distance and geocent_time are defined as constants
to generate the waveform at a fixed reference point.

The compression section can be set to None for testing purposes. For a practical
example of how it is used, see the next tutorial.

Step 2 Generating the Amplitude Spectral Density (ASD) dataset

To generate an ASD dataset run

dingo_generate_asd_dataset --settings_file asd_dataset_settings.yaml --data_dir training_data/asd_dataset

This command will generate an dingo.gw.noise.asd_dataset.ASDDataset object in the form of an .hdf5 file, which will be used later for training. The reason for specifying a folder instead of a file, as in the waveform dataset example, is because some temporary data is downloaded to create Welch estimates of the ASD. This data can be removed later, but it is sometimes useful for understanding how the ASDs were estimated. For convenience here is a copy of the asd_dataset_settings.yaml file.

dataset_settings:
f_s: 4096
time_psd: 1024
T: 4
window:
 roll_off: 0.4
 type: tukey
time_gap: 0 # specifies the time skipped between to consecutive PSD estimates. If set < 0, the time segments overlap
num_psds_max: 1 # if set > 0, only a subset of all available PSDs will be used
detectors:
 - H1
 - L1
observing_run: O1

The asd_dataset_settings.yaml file includes several attributes. f_s is the sampling frequency in Hz, time_psd is the length of time used for an ASD estimate, and T is the duration of each ASD segment. Thus, the value of time_psd/T gives the number of segments analyzed to estimate one ASD. To avoid spectral leakage, a window is applied to each segment. We use the standard window used in LVK analyses, a Tukey window with a roll off of \(\alpha=0.4\). The next attribute, num_psds_max=1, defines the number of ASDs stored in the ASD dataset. For now, we will use only one. See the next tutorial for a more advanced setup.

Step 3 Training the network

To train the network, first the paths to the correct datasets must be specfied

dingo_train --settings_file train_settings.yaml --train_dir training

While this file contains numerous settings that are discussed in training, we will cover the most significant ones here. Again here is the file.

data:
 waveform_dataset_path: training_data/waveform_dataset.hdf5 # Contains intrinsic waveforms
 train_fraction: 0.95
 window: # Needed to calculate window factor for simulated data
 type: tukey
 f_s: 4096
 T: 4.0
 roll_off: 0.4
 detectors:
 - H1
 - L1
 extrinsic_prior: # Sampled at train time
 dec: default
 ra: default
 geocent_time: bilby.core.prior.Uniform(minimum=-0.10, maximum=0.10)
 psi: default
 luminosity_distance: bilby.core.prior.Uniform(minimum=100.0, maximum=1000.0)
 ref_time: 1126259462.391
 inference_parameters:
 - chirp_mass
 - mass_ratio
 - chi_1
 - chi_2
 - theta_jn
 - dec
 - ra
 - geocent_time
 - luminosity_distance
 - psi
 - phase

Model architecture
model:
 type: nsf+embedding
 # kwargs for neural spline flow
 nsf_kwargs:
 num_flow_steps: 5
 base_transform_kwargs:
 hidden_dim: 64
 num_transform_blocks: 5
 activation: elu
 dropout_probability: 0.0
 batch_norm: True
 num_bins: 8
 base_transform_type: rq-coupling
 # kwargs for embedding net
 embedding_net_kwargs:
 output_dim: 128
 hidden_dims: [1024, 512, 256, 128]
 activation: elu
 dropout: 0.0
 batch_norm: True
 svd:
 num_training_samples: 1000
 num_validation_samples: 100
 size: 50

The first stage (and only) stage of training.
training:
 stage_0:
 epochs: 20
 asd_dataset_path: training_data/asd_dataset/asds_O1.hdf5 # this should just contain a single fiducial ASD per detector for pretraining
 freeze_rb_layer: True
 optimizer:
 type: adam
 lr: 0.0001
 scheduler:
 type: cosine
 T_max: 20
 batch_size: 64

Local settings for training that have no impact on the final trained network.
local:
 device: cpu # Change this to 'cuda' for training on a GPU.
 num_workers: 6 # num_workers >0 does not work on Mac, see https://stackoverflow.com/questions/64772335/pytorch-w-parallelnative-cpp206
 runtime_limits:
 max_time_per_run: 36000
 max_epochs_per_run: 30
 checkpoint_epochs: 15

For training, several extrinsic_priors are set, which project the waveforms generated in step 1 onto the detector network according to the specified priors. This is considerably cheaper than generating waveforms sampled from the full intrinsic plus extrinsic prior in step 1.

Another crucial setting is inference_parameters. By default all the parameters described in dingo.gw.prior are inferred. If a parameter needs to be marginalized over this parameter can be omitted from inference_parameters.

Essential settings for the model architecture (the neural spline flow and the embedding network) are as follows: nsf_kwargs.num_flow_steps describes the number of flow transforms from the base distribution to the final distribution, while embedding_net_kwargs.hidden_dim defines the dimensions of the neural network’s hidden layer, which selects the most important data features. Finally, embedding_net_kwargs.svd describes the settings of the SVD used as a pre-processing step before passing data vectors to the embedding network. For a production network, these values should be much higher than those used in this tutorial.

Next, we turn to the training section. Here we only employ a single stage of training with settings provided under the stage_0 attribute. This stage uses the training dataset generated in step 1 for 30 epochs. We also specify the asd_dataset_path here, which was created in step 2.

Finally, the local settings section affects only parallelization during training and the device used. An important setting here is num_workers, which determines how many PyTorch dataloader processes are spawned during training. If training is too slow, a potential cause is a lack of workers to load data into the network. This can be identified if the dataloader times in the dingo_train output exceed 100ms. The solution is generally to increase the number of workers.

Step 4 Doing Inference

The final step is to do inference, for example on GW150914. To do this we will use
dingo_pipe. For a local run execute:

dingo_pipe GW150914.ini

This calls dingo_pipe on an INI file that specifies the event to run on,

##
Job submission arguments
##

local = True
accounting = dingo
request-cpus-importance-sampling = 2

##
Sampler arguments
##

model = training/model_latest.pt
device = 'cpu'
num-samples = 5000
batch-size = 5000
recover-log-prob = false
importance-sample = false

##
Data generation arguments
##

trigger-time = GW150914
label = GW150914
outdir = outdir_GW150914
channel-dict = {H1:GWOSC, L1:GWOSC}
psd-length = 128
sampling-frequency = 2048.0
importance-sampling-updates = {'duration': 4.0}

##
Plotting arguments
##

plot-corner = true
plot-weights = true
plot-log-probs = true

This will generate files which are described in dingo_pipe. To see the results, take a look in outdir_GW150914. We set the flag importance-sample = False in the INI file, which disables importance sampling for this simple example. Generally one would omit this (it defaults to True).

We can load and manipulate the data with the following code. For example, here we create a cornerplot

from dingo.gw.result import Result
result = Result(file_name="outdir_GW150914/result/GW150914_data0_1126259462-4_sampling.hdf5")
result.plot_corner()

Notice the results don’t look very promising, but this is expected as the settings used in this
example are not enough to warrant convergence. Dingo should also automatically generate a cornerplot which will
be displayed under outdir_GW150914.

 NPE Model (production)

NPE Model (production)

We will now do a tutorial with higher profile settings. Note these are not the
full production settings used for runs since we are not using GNPE, but
they should lead to decent results. Go to this tutorial for the full production network. The
steps are the essentially same as the toy example but with higher level settings. It is
recommended to run this on a cluster or GPU machine.

We can repeat the same first few steps from the previous tutorial with a couple
differences. The file structure is mostly the same but now there is an additional
asd_dataset_fiducial which will be explained below.

npe_model/

 # config files
 waveform_dataset_settings.yaml
 asd_dataset_settings.yaml
 asd_dataset_settings_fiducial.yaml
 train_settings.yaml
 GW150914.ini

 training_data/
 waveform_dataset.hdf5
 asd_dataset_fiducial/ # Contains the asd_dataset.hdf5 and also temp files for asd generation
 asd_dataset/ # Contains the asd_dataset.hdf5 and also temp files for asd generation

 training/
 model_050.pt
 model_stage_0.pt
 model_latest.pt
 history.txt
 # etc...

 outdir_GW150914/
 # dingo_pipe output

Step 1 Generating a Waveform Dataset

Again the first step is to generate the necessary folders

cd npe_model
mkdir training_data
mkdir training

As before we run dingo_generate_dataset:

dingo_generate_dataset --settings waveform_dataset_settings.yaml --out_file training_data/waveform_dataset.hdf5

The waveform_dataset_settings.yaml settings file now includes a new attribute compression.
This creates a truncated singular value decomposition (SVD) of the waveform polarizations which
is stored on disk as a compressed representation of the dataset. The size attribute
refers to the number of basis vectors included in the expansion of the waveform. This can later be
changed during training. When the compression phase is finished, the log will
display the mismatch between the decompressed waveform and generated waveform. You can
also access these mismatch settings by running dingo_ls on a generated waveform_dataset.hdf5
file. It will show multiple mismatches corresponding to the number of basis vectors used
to decompress the waveform. It is up to the user as to what type of mismatch is acceptable,
typically a maximum mismatch of \(10^{-3}-10^{-4}\) is recommended.

We could also generate the waveform dataset using a
condor DAG [https://htcondor.readthedocs.io/en/latest/users-manual/dagman-workflows.html]
on a cluster. To do this run

dingo_generate_dataset_dag --settings_file waveform_dataset_settings.yaml --out_file training_data/waveform_dataset.hdf5 --env_path $DINGO_VENV_PATH --num_jobs 4 --request_cpus 64 --request_memory 128000 --request_memory_high 256000

and then submit the generated DAG

condor_submit_dag condor/submit/dingo_generate_dataset_dagman_DATE.submit

where DATE is specified in the filename of the .submit file that was generated.

Step 2 Generating an ASD dataset

To generate an ASD dataset we can run the same command as in the previous tutorial.

dingo_generate_asd_dataset --settings_file asd_dataset_settings_fiducial.yaml --data_dir training_data/asd_dataset_fiducial -out_name training_data/asd_dataset_fiducial/asds_O1_fiducial.hdf5

However, this time, during training we will need two sets of ASDs. The first one will be
fixed during the initial training – this is the fiducial dataset generated above.
This dataset will contain only a single ASD. The second ASDDataset will contain many
ASDs and is used during the fine tuning stage. The reason to use just one ASD during the first
stage is to allow the network to train in an easier inference setting. It should learn how
to infer parameters in the presence of that one ASD. However, during inference
the ASD will be variable. Thus, in the second stage many ASDs are used so that dingo learns the distribution
of ASDs from the observing run. We find this split leads to an improvement in
overall performance. To generate this second dataset run

dingo_generate_asd_dataset --settings_file asd_dataset_settings.yaml --data_dir training_data/asd_dataset -out_name training_data/asd_dataset/asds_O1.hdf5

We can see that in asd_dataset_settings.yaml the num_psds_max
attribute is set to 0 indicating that all possible ASDs will be downloaded. If you want to
decrease this, make sure that there are enough ASDs in the training set to represent
any possible data the dingo network will see. Typically this should be at least 1000,
but of course more is better.

Step 3 Training the network

Now we are ready for training. The command is analogous to the previous tutorial
but the settings are increased to production values. To run the training do

dingo_train --settings_file train_settings.yaml --train_dir training

Tip

If running on a machine with multiple GPUs make sure to specify the GPU by running
export CUDA_VISIBILE_DEVICES=GPU_NUM before running dingo_train

The main difference from the toy example in the network architecture is the size of the embedding
network which is described in model.embedding_net_kwargs.hidden_dims and the
number of neural spline flow transforms described in
model.nsf_kwargs.num_flow_steps. These increase the depth of the network and the
number/size of the layers in the embedding network.

Notice, we are not inferring the phase parameter here as it is not listed below inference_parameters. However,
we do recover the phase in post processing. To see why and how this is done see synthetic phase

Also notice there are now two training stages stage_0 and stage_1. In stage_0 a fixed ASD is used and the reduced basis layer
is frozen. Then in stage_1 all ASDs are used and the reduced basis layer is unfrozen.

The main difference in the local settings is that the device is set to CUDA.
Note if you have multiple GPUs on the machine, you can select which GPU to use
by running

Important

It is recommended to have at least 40 GB of GPU memory on the device. If there is not enough memory on the machine,
first try halving the batch_size. In this case one should also multiply the learning rate, lr, by \(\frac{1}{\sqrt{2}}\). If
there is still not enough memory, consider reducing the number of hidden dimensions.

Step 4 Doing Inference

We can run inference with the same command as before

dingo_pipe GW150914.ini

There is just one difference from the previous example. It is possible to reweight the posterior to a new prior.
Note though, that the new prior must be a subset of the previous prior. Otherwise, the proposal distribution
generated by dingo will include regions from the new prior where the network has not been trained which will
result in a low effective sample size and lead to poor results. As an example see the prior-dict attribute in
GW150914.ini.

 GNPE model (production)

GNPE model (production)

This tutorial has the highest profile settings and is the one typically used for production use.
The main difference from the NPE tutorial is that here we are now using GNPE
(group neural posterior estimation). The data generation is exactly the same as the previous
tutorial, but we repeat it here, for completeness.

The file structure is similar to the NPE example, except now there are two
training sub-directories and two train_settings.yaml files.

gnpe_model/

 # config files
 waveform_dataset_settings.yaml
 asd_dataset_settings_fiducial.yaml
 asd_dataset_settings.yaml
 train_settings_main.yaml
 train_settings_init.yaml
 GW150914.ini

 training_data/
 waveform_dataset.hdf5
 asd_dataset.hdf5
 asd_dataset_fiducial.hdf5
 asd_dataset_fiducial/ # Contains the asd_dataset.hdf5 and also temp files for asd generation
 asd_dataset/ # Contains the asd_dataset.hdf5 and also temp files for asd generation

 training/
 main_train_dir/
 model_050.pt
 model_stage_0.pt
 model_latest.pt
 history.txt
 # etc...
 init_train_dir/
 model_050.pt
 model_stage_0.pt
 model_latest.pt
 history.txt
 # etc...

 outdir_GW150914/
 # dingo_pipe output

Step 1 Generating a Waveform Dataset

First generate the directory structure:

cd gnpe_model
mkdir training_data
mkdir training
mkdir training/main_train_dir
mkdir training/init_train_dir

Generate the waveform dataset:

dingo_generate_dataset --settings waveform_dataset_settings.yaml --out_file training_data/waveform_dataset.hdf5

or using condor:

dingo_generate_dataset_dag --settings_file
waveform_dataset_settings.yaml --out_file
training_data/waveform_dataset.hdf5 --env_path $DINGO_VENV_PATH --num_jobs 4
--request_cpus 16 --request_memory 1280000 --request_memory_high 256000

Step 2 Generating an ASD dataset

As before we generate a fiducial ASD dataset containing a single ASD:

dingo_generate_asd_dataset --settings_file asd_dataset_settings_fiducial.yaml --data_dir
training_data/asd_dataset_fiducial -out_name training_data/asd_dataset_fiducial/asds_O1_fiducial.hdf5

and a large ASD dataset:

dingo_generate_asd_dataset --settings_file asd_dataset_settings.yaml --data_dir
training_data/asd_dataset -out_name training_data/asd_dataset/asds_O1.hdf5

Step 3 Training the network

Now we are ready for training using GNPE. Here we need to train two networks, one which estimates the time of arrival
in the detectors and one which does the full inference task. A natural question
is why train two networks. The main idea is if one is able to align (and thus
standardize) the times of arrival in the detectors, the inference task will
become significantly easier. To do this we first need to train an initialization
network which estimates the time of arrival in the detectors:

dingo_train --settings_file train_settings_init.yaml --train_dir training/init_network

Notice that the inference parameters are only the H1_time and L1_time. Also notice that the embedding_net
is significantly smaller and the number of flow steps, num_flow_steps is reduced.

dingo_train --settings_file train_settings_main.yaml --train_dir training/main_network

Notice the data.gnpe_time_shifts section. The kernel describes how much to blur the GNPE proxies and is specified in
seconds. To read more about this see GNPE.

Step 4 Doing Inference

Performing inference requires a few changes to the previous NPE setup. Most notably, since we are now using GNPE, we
have to specify the file path to both the initialization network and the main network. Another
difference is the new attribute under sampler arguments num-gnpe-iterations which indicates the
number of GNPE steps to take. If the initialization network is not fully converged or if
the length of the segment being analyzed is very long, it is recommended to increase this number.

dingo_pipe GW150914.ini

 Inference on an injection

Inference on an injection

A simple example is creating an injection consistent with what the
network was trained on, and then running Dingo on it. First one can instantiate
the dingo.gw.injection.Injection using the metadata from the
dingo.core.models.posterior_model.PosteriorModel (the trained network). An ASD dataset also needs to be specified,
one can take the fiducial asd dataset the network was trained on.

from dingo.core.models import PosteriorModel
import dingo.gw.injection as injection
from dingo.gw.ASD_dataset.noise_dataset import ASDDataset

main_pm = PosteriorModel(
 device="cuda",
 model_filename="/path/to/main_network",
 load_training_info=False
)

init_pm = PosteriorModel(
 device='cuda',
 model_filename="/path/to/init_network",
 load_training_info=False
)

injection_generator = injection.Injection.from_posterior_model_metadata(main_pm.metadata)
asd_fname = main_pm.metadata["train_settings"]["training"]["stage_0"]["asd_dataset_path"]
asd_dataset = ASDDataset(file_name=asd_fname)
injection_generator.asd = {k:v[0] for k,v in asd_dataset.asds.items()}

intrinsic_parameters = {
 "chirp_mass": 35,
 "mass_ratio": 0.5,
 "a_1": .3,
 "a_2": .5,
 "tilt_1": 0.,
 "tilt_2": 0.,
 "phi_jl": 0.,
 "phi_12": 0.
}

extrinsic_parameters = {
 'phase': 0.,
 'theta_jn': 2.3,
 'geocent_time': 0.,
 'luminosity_distance': 400.,
 'ra': 0.,
 'dec': 0.,
 'psi': 0.,
}

theta = {**intrinsic_parameters, **extrinsic_parameters}
strain_data = injection_generator.injection(theta)

Then one can create a injections and do inference on them.

from dingo.gw.inference.gw_samplers import GWSamplerGNPE, GWSampler

init_sampler = GWSampler(model=init_pm)
sampler = GWSamplerGNPE(model=main_pm, init_sampler=init_sampler, num_iterations=30)
sampler.context = strain_data
sampler.run_sampler(num_samples=50_000, batch_size=10_000)
result = sampler.to_result()
result.plot_corner()

 Introduction to neural posterior estimation

Introduction to neural posterior estimation

In contrast to classical parameter estimation codes like Bilby [https://lscsoft.docs.ligo.org/bilby/index.html] and LALInference [https://lscsoft.docs.ligo.org/lalsuite/lalinference/index.html], Dingo uses simulation-based (or likelihood-free) inference. The basic idea is to train a neural network to represent the Bayesian posterior over source parameters given the observed data. Training is based on simulated data rather than likelihood evaluations. Neural posterior estimation (NPE) [https://arxiv.org/abs/1605.06376] combines the ideas of simulation-based inference with conditional neural density estimators.

Normalizing flows

Normalizing flows provide a means to represent complicated probability distributions using neural networks, in a way that enables rapid sampling and density estimation. They represent the distribution in terms of a mapping (or flow) \(f: u \to \theta\) on the sample space from a much simpler “base” distribution, which we take to be standard normal (of the same dimension as the parameter space). If \(f\) is allowed to depend on observed data \(d\) (denoted \(f_d\)) then the flow describes a conditional probability distribution \(q(\theta | d)\). The PDF is given by the change of variables rule,

(1)\[
q(\theta | d) = \mathcal{N}(0, 1)^D(f_d^{-1}(\theta)) \left| \det f_d^{-1} \right|,
\]

where \(D\) is the dimensionality of the parameter space.

A normalizing flow must satisfy the following properties:

	Invertibility, so that one can evaluate \(f_d^{-1}(\theta)\) for any \(\theta\).

	Simple Jacobian determinant, so that one can quickly evaluate \(\det f_d^{-1}(\theta)\).

With these properties, one can quickly evaluate the right-hand side of (1) to obtain the density. Various types of normalizing flow have been constructed to satisfy these properties, typically as a composition of relatively simple transforms \(f^{(j)}\). These relatively simple transforms are then parametrized by the output of a neural network. To sample \(\theta \sim q(\theta|d)\), one samples \(u \sim \mathcal N(0,1)^D\) and applies the flow in the forward direction.

For each flow step, Dingo uses a conditional coupling transform, meaning that half of the components are held fixed, and the other half transform elementwise, conditional on the untransformed components and the data,

\[\begin{split}
\begin{equation}
 f^{(j)}_{d,i}(u) =
 \begin{cases}
 u_i & \text{if } i \le D/2,\\
 f^{(j)}_i(u_i; u_{1:D/2},d) & \text{if } i > D/2.
 \end{cases}
\end{equation}
\end{split}\]

If the elementwise functions \(f^{(j)}_i\) are differentiable, then it follows automatically that we have a normalizing flow. We use a neural spline flow [https://arxiv.org/abs/1906.04032], meaning that the functions \(f^{(j)}_i\) are splines, which in turn are parametrized by neural network outputs (taking as input \((u_{1:D/2},d)\)). Between each of these transforms, the parameters are randomly permuted, ensuring that the full flow is sufficiently flexible. Dingo uses the implementation of this entire structure provided by nflows [https://github.com/bayesiains/nflows].

Training

The conditional neural density estimator \(q(\theta | d)\) is initialized randomly and must be trained to become a good approximation to the posterior \(p(\theta | d)\). To achieve this, one must specify a target loss function to minimize. A reasonable starting point is to minimize the Kullback-Leibler (KL) divergence [https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence] of \(p\) from \(q\),

\[
D_{\text{KL}}(p \| q) = \int d\theta\, p(\theta | d) \log \frac{p(\theta | d)}{q(\theta | d)}.
\]

This measures a deviation between the two distributions, and is notably not symmetric. (We take the so-called “forward” KL divergence, which is “mass-covering”.) Taking the expectation over data samples \(d \sim p(d)\), and dropping the numerator from the \(\log\) term (since it is independent of the network parameters), we arrive at the loss function

(2)\[\begin{split}
\begin{align}
 L &= \int dd\, p(d) \int d\theta\, p(\theta | d) \left[- \log q(\theta | d) \right]\\
 &= \int d\theta\, p(\theta) \int dd\, p(d|\theta)\left[- \log q(\theta | d) \right].
\end{align}
\end{split}\]

On the second line we used Bayes’ theorem \(p(d) p(\theta | d) = p(\theta) p(d | \theta)\) to re-order the integrations. The loss may finally be approximated on a mini-batch of samples,

\[
L \approx - \frac{1}{N} \sum_{i=1}^N \log q(\theta^{(i)} | d^{(i)}),
\]

where the samples are drawn ancestrally in a two-step process:

	Sample from the prior, \(\theta^{(i)} \sim p(\theta)\),

	Simulate data, \(d^{(i)} \sim p(d | \theta^{(i)})\),

We then take the gradient of \(L\) with respect to network parameters and minimize using the Adam [https://pytorch.org/docs/stable/generated/torch.optim.Adam.html] optimizer.

Importantly, the process to generate training samples incorporates the same information as a standard (likelihood-based) sampler would use. Namely, the prior is incorporated by sampling parameters from it, and the likelihood is incorporated by simulating data. Bayes’ theorem is incorporated in going from line 1 to line 2 in (2). For gravitational waves, the likelihood is taken to be the probability that the residual when subtracting a signal \(h(\theta)\) from \(d\) is stationary Gaussian noise (with the measured PSD \(S_{\text{n}}(f)\) in the detector). Likewise, to simulate data we generate a waveform \(h(\theta^{(i)})\) and add a random noise realization \(n \sim \mathcal N(0, S_\text{n}(f))\). Ultimately, however, the SBI approach is more flexible, since in principle one could add non-stationary or non-Gaussian noise, and train the network to reproduce the posterior, despite not having a tractable likelihood. See the section on training data for additional details of training for gravitational wave inference.

Intuitively, one way to understand NPE is simply that we are doing supervised deep learning—inferring parameter labels from examples—but allowing for the flexibility to produce a probabilistic answer. With this flexibility, the network learns to produce the Bayesian posterior.

 Code design

Code design

Reproducibility

Generating reproducible results must be central to any deep learning code. Dingo attempts to achieve this in the following ways:

Settings

There are a large number of configuration options that must be selected when using Dingo. These include

	Waveform and noise dataset settings,

	Training settings, including pre-processing, neural network, and training strategy settings,

	Inference settings, including event time or injection data.

The Dingo approach is to save all of these settings as nested dictionaries together with the outputs of the various tasks. In practice, this means specifying the settings as a .yaml file and passing this to a command-line script that runs some code and produces an output file (.hdf5 or .pt). The output file then contains the settings dictionary (possibly augmented by additional derived parameters). All output files can be inspected using the command-line script dingo_ls, which prints the stored settings and possibly additional information. The output from dingo_ls could (with a small amount of effort) be used to reproduce the exact results (modulo random seeds, to be implemented).

In addition to saving the user-provided settings at each step, Dingo also saves the settings from precursor steps. For example, when training a model on data from a given waveform dataset, the waveform dataset settings are also saved along with the model settings. This can be very useful at a later point, when only the trained model is available, not the training data. Beyond ensuring reproducibility, having these precursor settings available is needed for certain downstream tasks (e.g., combining the intrinsic prior from a waveform dataset with the extrinsic prior specified for training).

Random seeds

To-do

Implement this.

Unique identifiers for models

To-do

Implement this.

Code re-use

core and gw packages

Although the only current use case for Dingo is to analyze LVK data, we hope that it can be extended to other GW or astrophysical (or more general scientific) applications. To facilitate this, we follow the Bilby [https://lscsoft.docs.ligo.org/bilby/index.html] approach of partitioning code into core and gw components: gw contains GW-specific code (relating to waveforms, interferometers, etc.) whereas core contains generic network architectures, data structures, samplers, etc., that we expect could be used in other applications. As we find ways to write elements of code in more generic ways, we hope to migrate additional components from gw to core. We could then envision future packages, e.g., for LISA inference, GW populations, or cosmology.

Data transforms

We follow the PyTorch guidelines [https://pytorch.org/tutorials/beginner/basics/transforms_tutorial.html] of pre-processing data using a sequence of transforms. Dingo includes transforms for tasks such as sampling extrinsic parameters, projecting waveform polarizations to detectors, and adding noise. The same transforms are re-used at inference time, where a similar (but always identical) sequence is required. Some transforms also behave differently at inference time, and thus have a flag to specify the mode.

Data structures

Dingo uses several dataset classes, all of which inherit from dingo.core.dataset.DingoDataset. This provides a common IO (to save/load from HDF5 as well as dictionaries). It also stores the settings dictionary as an attribute.

Command-line scripts

In general, Dingo is constructed around libraries and classes that are used to carry out various data processing tasks. There are a large number of configuration options, which are often passed as dictionaries, enabling the addition of new settings without breaking old code.

For very high-level tasks, such as generating a training dataset or training a network, we believe it is most straightforward to use a command-line interface. This is because these are end-user tasks that might be called by separate programs, or on a cluster, or because some of these (dataset generation and training) can be quite expensive.

A Dingo command-line script begins with the prefix dingo_ and is usually a thin wrapper around a function that could be called by other code if desired. It takes as input a .yaml file, passes it as a dictionary to the function, obtains a result, and saves it to disk. We hope that this balance between libraries and a command-line interface enables an extensible code going forward.

 Generating waveforms

Generating waveforms

Training data for Dingo consist of pairs of parameters \(\theta\) and corresponding simulated strain data sets \(d_I\), where \(I\) runs over the GW interferometers (L1, H1, V1, etc.). Additionally, when conditioning on detector noise properties, data also include noise context (the PSD \(S_{\text{n},I}\)). Strain data sets are of the form

\[
d_I = h_I(\theta) + n_I,
\]

where \(h_I(\theta)\) is a signal waveform (provided by a waveform model) and \(n_I\) is a noise realization (stationary and Gaussian, consistent with \(S_{\text{n}, I}\)).

Data domain

At present, Dingo works entirely with frequency domain data. Although NPE is very flexible and could in principle learn to interpret data in any representation, FD data are especially convenient because (1) stationary Gaussian noise is independent in each frequency bin, so noise generation is straightforward, (2) time shifts take a simple form, enabling improved data augmentation, and (3) the noise context is already in FD. Other domains could be useful in the future, however, so the code is written in a way that the domain could be adapted.

The domain is specified by instantiating a FrequencyDomain,

from dingo.gw.domains import FrequencyDomain
domain = FrequencyDomain(f_min=20.0, f_max=1024.0, delta_f=0.125)

/home/docs/checkouts/readthedocs.org/user_builds/dingo-gw/envs/latest/lib/python3.10/site-packages/dingo/gw/__init__.py:3: UserWarning: Wswiglal-redir-stdio:

SWIGLAL standard output/error redirection is enabled in IPython.
This may lead to performance penalties. To disable locally, use:

with lal.no_swig_redirect_standard_output_error():
 ...

To disable globally, use:

lal.swig_redirect_standard_output_error(False)

Note however that this will likely lead to error messages from
LAL functions being either misdirected or lost when called from
Jupyter notebooks.

To suppress this warning, use:

import warnings
warnings.filterwarnings("ignore", "Wswiglal-redir-stdio")
import lal

 import lal

Derived class properties include, e.g., the frequency grid. Frequency arrays run from 0 to f_max, as is standard for GW data analysis software.

domain.sample_frequencies

array([0.000000e+00, 1.250000e-01, 2.500000e-01, ..., 1.023750e+03,
 1.023875e+03, 1.024000e+03], dtype=float32)

Note

The window factor \(w\) used when FFTing from time domain data is also stored within the domain, in domain.window_factor. This enters into the standard deviation of white noise in each frequency bin, domain.noise_std. In frequency domain, this is given by \(\sqrt{w/4\delta f}\).

Various class methods also act on data, to perform operations such as zeroing below f_min, truncating above f_max, or applying a time shift:

	
class dingo.gw.domains.FrequencyDomain(f_min: float, f_max: float, delta_f: float, window_factor: float | None = None)

	Defines the physical domain on which the data of interest live.

The frequency bins are assumed to be uniform between [0, f_max]
with spacing delta_f.
Given a finite length of time domain data, the Fourier domain data
starts at a frequency f_min and is zero below this frequency.
window_kwargs specify windowing used for FFT to obtain FD data from TD
data in practice.

	
static add_phase(data, phase)

	Add a (frequency-dependent) phase to a frequency series. Allows for batching,
as well as additional channels (such as detectors). Accounts for the fact that
the data could be a complex frequency series or real and imaginary parts.

Convention: the phase phi(f) is defined via exp(- 1j * phi(f)).

	Parameters:

	
	data (Union[np.array, torch.Tensor]) –

	phase (Union[np.array, torch.Tensor]) –

	Return type:

	New array or tensor of the same shape as data.

	
property delta_f: float

	The frequency spacing of the uniform grid [Hz].

	
property domain_dict

	Enables to rebuild the domain via calling build_domain(domain_dict).

	
property duration: float

	Waveform duration in seconds.

	
property f_max: float

	The maximum frequency [Hz] is typically set to half the sampling
rate.

	
property f_min: float

	The minimum frequency [Hz].

	
property frequency_mask: ndarray

	Mask which selects frequency bins greater than or equal to the
starting frequency

	
property frequency_mask_length: int

	Number of samples in the subdomain domain[frequency_mask].

	
get_sample_frequencies_astype(data)

	Returns a 1D frequency array compatible with the last index of data array.

Decides whether array is numpy or torch tensor (and cuda vs cpu), and whether it
contains the leading zeros below f_min.

	Parameters:

	data (Union[np.array, torch.Tensor]) – Sample data

	Return type:

	frequency array compatible with last index

	
property noise_std: float

	Standard deviation of the whitened noise distribution.

To have noise that comes from a multivariate unit normal
distribution, you must divide by this factor. In practice, this means
dividing the whitened waveforms by this.

TODO: This description makes some assumptions that need to be clarified.
Windowing of TD data; tapering window has a slope -> reduces power only for noise,
but not for the signal which is in the main part unaffected by the taper

	
property sampling_rate: float

	The sampling rate of the data [Hz].

	
set_new_range(f_min: float | None = None, f_max: float | None = None)

	Set a new range [f_min, f_max] for the domain. This is only allowed if the new
range is contained within the old one.

	
time_translate_data(data, dt)

	Time translate frequency-domain data by dt. Time translation corresponds (in
frequency domain) to multiplication by

\[\exp(-2 \pi i \, f \, dt).\]

This method allows for multiple batch dimensions. For torch.Tensor data,
allow for either a complex or a (real, imag) representation.

	Parameters:

	
	data (array-like (numpy, torch)) – Shape (B, C, N), where

	B corresponds to any dimension >= 0,

	C is either absent (for complex data) or has dimension >= 2 (for data
represented as real and imaginary parts), and

	N is either len(self) or len(self)-self.min_idx (for truncated data).

	dt (torch tensor, or scalar (if data is numpy)) – Shape (B)

	Return type:

	Array-like of the same form as data.

	
update(new_settings: dict)

	Update the domain with new settings. This is only allowed if the new settings
are “compatible” with the old ones. E.g., f_min should be larger than the
existing f_min.

	Parameters:

	new_settings (dict) – Settings dictionary. Must contain a subset of the keys contained in
domain_dict.

	
update_data(data: ndarray, axis: int = -1, low_value: float = 0.0)

	Adjusts data to be compatible with the domain:

	Below f_min, it sets the data to low_value (typically 0.0 for a waveform,
but for a PSD this might be a large value).

	Above f_max, it truncates the data array.

	Parameters:

	
	data (np.ndarray) – Data array

	axis (int) – Which data axis to apply the adjustment along.

	low_value (float) – Below f_min, set the data to this value.

	Returns:

	The new data array.

	Return type:

	np.ndarray

Waveform generator

Waveforms are generated using the WaveformGenerator class (or its subclass NewInterfaceWaveformGenerator, for employing the new LIGO waveform interface, needed for some approximants). This depends on a Domain as well as a waveform approximant and a reference frequency f_ref. In the backend, the WaveformGenerator class calls LALSimulation [https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/] functions (typically SimInspiralFD) via the SWIG-Python interface. For time domain waveforms, SimInspiralFD takes care of FFTing to frequency domain. The NewInterfaceWaveformGenerator class calls the gwsignal module, a Python interface recently implemented in LALSimulation, which is needed for employing some of the latest waveform approximants, as the SEOBNRv5HM and SEOBNRv5PHM.

from dingo.gw.waveform_generator import WaveformGenerator #, NewInterfaceWaveformGenerator

wfg = WaveformGenerator(approximant='IMRPhenomXPHM', domain=domain, f_ref=20.0)
wfg = NewInterfaceWaveformGenerator(approximant='SEOBNRv5PHM', domain=domain, f_ref=20.0)

Setting spin_conversion_phase = None. Using phase parameter for conversion to cartesian spins.

To generate a waveform we first need to choose parameters. Here we sample parameters from a bilby.core.prior.PriorDict. We use the default Dingo intrinsic prior.

from bilby.core.prior import PriorDict
from dingo.gw.prior import default_intrinsic_dict

prior = PriorDict(default_intrinsic_dict)
prior

{'mass_1': Constraint(minimum=10.0, maximum=80.0, name=None, latex_label=None, unit=None),
 'mass_2': Constraint(minimum=10.0, maximum=80.0, name=None, latex_label=None, unit=None),
 'mass_ratio': bilby.gw.prior.UniformInComponentsMassRatio(minimum=0.125, maximum=1.0, name='mass_ratio', latex_label='q', unit=None, boundary=None, equal_mass=False),
 'chirp_mass': bilby.gw.prior.UniformInComponentsChirpMass(minimum=25.0, maximum=100.0, name='chirp_mass', latex_label='$\\mathcal{M}$', unit=None, boundary=None),
 'luminosity_distance': DeltaFunction(peak=1000.0, name=None, latex_label=None, unit=None),
 'theta_jn': Sine(minimum=0.0, maximum=3.141592653589793, name=None, latex_label=None, unit=None, boundary=None),
 'phase': Uniform(minimum=0.0, maximum=6.283185307179586, name=None, latex_label=None, unit=None, boundary='periodic'),
 'a_1': Uniform(minimum=0.0, maximum=0.99, name=None, latex_label=None, unit=None, boundary=None),
 'a_2': Uniform(minimum=0.0, maximum=0.99, name=None, latex_label=None, unit=None, boundary=None),
 'tilt_1': Sine(minimum=0.0, maximum=3.141592653589793, name=None, latex_label=None, unit=None, boundary=None),
 'tilt_2': Sine(minimum=0.0, maximum=3.141592653589793, name=None, latex_label=None, unit=None, boundary=None),
 'phi_12': Uniform(minimum=0.0, maximum=6.283185307179586, name=None, latex_label=None, unit=None, boundary='periodic'),
 'phi_jl': Uniform(minimum=0.0, maximum=6.283185307179586, name=None, latex_label=None, unit=None, boundary='periodic'),
 'geocent_time': DeltaFunction(peak=0.0, name=None, latex_label=None, unit=None)}

p = prior.sample()
p

{'mass_ratio': 0.27516887747784635,
 'chirp_mass': 75.96284973482983,
 'luminosity_distance': 1000.0,
 'theta_jn': 1.4424160368867687,
 'phase': 3.5597919874340875,
 'a_1': 0.6803566132772145,
 'a_2': 0.1772403333232536,
 'tilt_1': 2.4084579981751792,
 'tilt_2': 1.5913639153680237,
 'phi_12': 0.17224461804836214,
 'phi_jl': 5.8646174013435814,
 'geocent_time': 0.0}

Finally, we generate the waveform. This is returned as a dictionary, with entries for each polarization. This way of representing a sample is used throughout Dingo, and will be very convenient when applying transforms (to apply extrinsic parameters, add noise, etc.).

h = wfg.generate_hplus_hcross(p)
h

{'h_plus': array([0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j]),
 'h_cross': array([0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j])}

import matplotlib.pyplot as plt
plt.plot(domain.sample_frequencies, h['h_plus'].real, label='real')
plt.plot(domain.sample_frequencies, h['h_plus'].imag, label='imag')
plt.xlim((10,1024))
plt.xscale('log')
plt.legend()
plt.xlabel('f')
plt.ylabel(r'h_+')
plt.show()

[image: _images/5bde82848854d71d1229995a0dd3013262df85d19210240672c8943ab2ac7509.png]

Note that the waveform is nonzero slightly below f_min. This simply arises from the model implementation in LALSimulation. When training networks, input data will be truncated below f_min.

The complete specification of the WaveformGenerator class is given as

	
class dingo.gw.waveform_generator.WaveformGenerator(approximant: str, domain: Domain, f_ref: float, f_start: float | None = None, mode_list: List[Tuple] | None = None, transform=None, spin_conversion_phase=None, **kwargs)

	Generate polarizations using LALSimulation routines in the specified domain for a
single GW coalescence given a set of waveform parameters.

	Parameters:

	
	approximant (str) – Waveform “approximant” string understood by lalsimulation
This is defines which waveform model is used.

	domain (Domain) – Domain object that specifies on which physical domain the
waveform polarizations will be generated, e.g. Fourier
domain, time domain.

	f_ref (float) – Reference frequency for the waveforms

	f_start (float) – Starting frequency for waveform generation. This is optional, and if not
included, the starting frequency will be set to f_min. This exists so that
EOB waveforms can be generated starting from a lower frequency than f_min.

	mode_list (List[Tuple]) – A list of waveform (ell, m) modes to include when generating
the polarizations.

	spin_conversion_phase (float = None) – Value for phiRef when computing cartesian spins from bilby spins via
bilby_to_lalsimulation_spins. The common convention is to use the value of
the phase parameter here, which is also used in the spherical harmonics
when combining the different modes. If spin_conversion_phase = None,
this default behavior is adapted.
For dingo, this convention for the phase parameter makes it impossible to
treat the phase as an extrinsic parameter, since we can only account for
the change of phase in the spherical harmonics when changing the phase (in
order to also change the cartesian spins – specifically, to rotate the spins
by phase in the sx-sy plane – one would need to recompute the modes,
which is expensive).
By setting spin_conversion_phase != None, we impose the convention to always
use phase = spin_conversion_phase when computing the cartesian spins.

	
generate_FD_modes_LO(parameters)

	Generate FD modes in the L0 frame.

	Parameters:

	parameters (dict) – Dictionary of parameters for the waveform.
For details see see self.generate_hplus_hcross.

	Returns:

	
	hlm_fd (dict) – Dictionary with (l,m) as keys and the corresponding FD modes in lal format as
values.

	iota (float)

	
generate_FD_waveform(parameters_lal: Tuple) → Dict[str, ndarray]

	Generate Fourier domain GW polarizations (h_plus, h_cross).

	Parameters:

	parameters_lal – A tuple of parameters for the lalsimulation waveform generator

	Returns:

	A dictionary of generated waveform polarizations

	Return type:

	pol_dict

	
generate_TD_modes_L0(parameters)

	Generate TD modes in the L0 frame.

	Parameters:

	parameters (dict) – Dictionary of parameters for the waveform.
For details see see self.generate_hplus_hcross.

	Returns:

	
	hlm_td (dict) – Dictionary with (l,m) as keys and the corresponding TD modes in lal format as
values.

	iota (float)

	
generate_TD_waveform(parameters_lal: Tuple) → Dict[str, ndarray]

	Generate time domain GW polarizations (h_plus, h_cross)

	Parameters:

	parameters_lal – A tuple of parameters for the lalsimulation waveform generator

	Returns:

	A dictionary of generated waveform polarizations

	Return type:

	pol_dict

	
generate_hplus_hcross(parameters: Dict[str, float], catch_waveform_errors=True) → Dict[str, ndarray]

	Generate GW polarizations (h_plus, h_cross).

If the generation of the lalsimulation waveform fails with an
“Input domain error”, we return NaN polarizations.

Use the domain, approximant, and mode_list specified in the constructor
along with the waveform parameters to generate the waveform polarizations.

	Parameters:

	
	parameters (Dict[str, float]) – A dictionary of parameter names and scalar values.
The parameter dictionary must include the following keys.
For masses, spins, and distance there are multiple options.

	Mass: (mass_1, mass_2) or a pair of quantities from
	((chirp_mass, total_mass), (mass_ratio, symmetric_mass_ratio))

	Spin:
	(a_1, a_2, tilt_1, tilt_2, phi_12, phi_jl) if precessing binary or
(chi_1, chi_2) if the binary has aligned spins

Reference frequency: f_ref at which spin vectors are defined
Extrinsic:

Distance: one of (luminosity_distance, redshift, comoving_distance)
Inclination: theta_jn
Reference phase: phase
Geocentric time: geocent_time (GPS time)

	The following parameters are not required:
	Sky location: ra, dec,
Polarization angle: psi

	Units:
	Masses should be given in units of solar masses.
Distance should be given in megaparsecs (Mpc).
Frequencies should be given in Hz and time in seconds.
Spins should be dimensionless.
Angles should be in radians.

	catch_waveform_errors (bool) – Whether to catch lalsimulation errors

	Returns:

	A dictionary of generated waveform polarizations

	Return type:

	wf_dict

	
generate_hplus_hcross_m(parameters: Dict[str, float]) → Dict[tuple, Dict[str, ndarray]]

	Generate GW polarizations (h_plus, h_cross), separated into contributions from
the different modes. This method is identical to self.generate_hplus_hcross,
except that it generates the individual contributions of the modes to the
polarizations and sorts these according to their transformation behavior (see
below), instead of returning the overall sum.

This is useful in order to treat the phase as an extrinsic parameter. Instead of
{“h_plus”: hp, “h_cross”: hc}, this method returns a dict in the form of
{m: {“h_plus”: hp_m, “h_cross”: hc_m} for m in [-l_max,…,0,…,l_max]}. Each
key m contains the contribution to the polarization that transforms according
to exp(-1j * m * phase) under phase transformations (due to the spherical
harmonics).

	Note:
	
	pol_m[m] contains contributions of the m modes and and the -m modes.
This is because the frequency domain (FD) modes have a positive frequency
part which transforms as exp(-1j * m * phase), while the negative
frequency part transforms as exp(+1j * m * phase). Typically, one of these
dominates [e.g., the (2,2) mode is dominated by the negative frequency
part and the (-2,2) mode is dominated by the positive frequency part]
such that the sum of (l,|m|) and (l,-|m|) modes transforms approximately as
exp(1j * |m| * phase), which is e.g. used for phase marginalization in
bilby/lalinference. However, this is not exact. In this method we account
for this effect, such that each contribution pol_m[m] transforms
exactly as exp(-1j * m * phase).

	Phase shifts contribute in two ways: Firstly via the spherical harmonics,
which we account for with the exp(-1j * m * phase) transformation.
Secondly, the phase determines how the PE spins transform to cartesian
spins, by rotating (sx,sy) by phase. This is not accounted for in this
function. Instead, the phase for computing the cartesian spins is fixed
to self.spin_conversion_phase (if not None). This effectively changes the
PE parameters {phi_jl, phi_12} to parameters {phi_jl_prime, phi_12_prime}.
For parameter estimation, a postprocessing operation can be applied to
account for this, {phi_jl_prime, phi_12_prime} -> {phi_jl, phi_12}.
See also documentation of __init__ method for more information on
self.spin_conversion_phase.

Differences to self.generate_hplus_hcross:
- We don’t catch errors yet TODO
- We don’t apply transforms yet TODO

	Parameters:

	parameters (dict) – Dictionary of parameters for the waveform.
For details see see self.generate_hplus_hcross.

	Returns:

	pol_m – Dictionary with contributions to h_plus and h_cross, sorted by their
transformation behaviour under phase shifts:
{m: {“h_plus”: hp_m, “h_cross”: hc_m} for m in [-l_max,…,0,…,l_max]}
Each contribution h_m transforms as exp(-1j * m * phase) under phase shifts
(for fixed self.spin_conversion_phase, see above).

	Return type:

	dict

	
setup_mode_array(mode_list: List[Tuple]) → Dict

	Define a mode array to select waveform modes
to include in the polarizations from a list of modes.

	Parameters:

	mode_list (a list of (ell, m) modes) –

	Returns:

	A lal parameter dictionary

	Return type:

	lal_params

Waveform modes

Add later.

 Building a waveform dataset

Building a waveform dataset

For training neural networks, the more training samples the better. With too little training data, one runs the risk of overfitting. Waveforms, however, can be expensive to generate and take up significant storage. Dingo adopts several strategies to mitigate these problems:

	Dingo partitions parameters into two types—intrinsic and extrinsic—and builds a training set based only on the intrinsic parameters. This consists of waveform polarizations \(h_+\) and \(h_\times\). Extrinsic parameters are selected during training, and applied to generate the detector waveforms \(h_I\). This augments the training set to provide unlimited samples from the extrinsic parameters.

	Saved waveforms are compressed using a singular value decomposition. Although this is lossy, waveform mismatches can monitored to ensure that they fall below the intrinsic error in the waveform model.

The WaveformDataset class

The WaveformDataset is a storage container for waveform polarizations and parameters, which can used to serve samples to a neural network during training:

	
class dingo.gw.dataset.WaveformDataset(file_name=None, dictionary=None, transform=None, precision=None, domain_update=None, svd_size_update=None)

	Bases: DingoDataset, Dataset

This class stores a dataset of waveforms (polarizations) and corresponding
parameters.

It can load the dataset either from an HDF5 file or suitable dictionary.

Once a waveform data set is in memory, the waveform data are consumed through a
__getitem__() call, optionally applying a chain of transformations, which are classes
that implement a __call__() method.

For constructing, provide either file_name, or dictionary containing data and
settings entries, or neither.

	Parameters:

	
	file_name (str) – HDF5 file containing a dataset

	dictionary (dict) – Contains settings and data entries. The dictionary keys should be
‘settings’, ‘parameters’, and ‘polarizations’.

	transform (Transform) – Transform to be applied to dataset samples when accessed through __getitem__

	precision (str ('single', 'double')) – If provided, changes precision of loaded dataset.

	domain_update (dict) – If provided, update domain from existing domain using new settings.

	svd_size_update (int) – If provided, reduces the SVD size when decompressing (for speed).

	
initialize_decompression(svd_size_update: int | None = None)

	Sets up decompression transforms. These are applied to the raw dataset before
self.transform. E.g., SVD decompression.

	Parameters:

	svd_size_update (int) – If provided, reduces the SVD size when decompressing (for speed).

	
load_supplemental(domain_update=None, svd_size_update=None)

	Method called immediately after loading a dataset.

Creates (and possibly updates) domain, updates dtypes, and initializes any
decompression transform. Also zeros data below f_min, and truncates above f_max.

	Parameters:

	
	domain_update (dict) – If provided, update domain from existing domain using new settings.

	svd_size_update (int) – If provided, reduces the SVD size when decompressing (for speed).

	
update_domain(domain_update: dict | None = None)

	Update the domain based on new configuration.

The waveform dataset provides waveform polarizations in a particular domain. In
Frequency domain, this is [0, domain._f_max]. Furthermore, data is set to 0 below
domain._f_min. In practice one may want to train a network based on slightly
different domain settings, which corresponds to truncating the likelihood
integral.

This method provides functionality for that. It truncates and/or zeroes the
dataset to the range specified by the domain, by calling domain.update_data.

	Parameters:

	domain_update (dict) – Settings dictionary. Must contain a subset of the keys contained in
domain_dict.

WaveformDataset subclasses dingo.core.dataset.DingoDataset and torch.utils.data.Dataset. The former provides generic functionality for saving and loading datasets as HDF5 files and dictionaries, and is used in several components of Dingo. The latter allows the WaveformDataset to be used with a PyTorch DataLoader. In general, we follow the PyTorch design framework for training, including Datasets, DataLoaders, [https://pytorch.org/tutorials/beginner/basics/data_tutorial.html] and Transforms [https://pytorch.org/tutorials/beginner/basics/transforms_tutorial.html].

Generating a simple dataset

As described above, the WaveformDataset class is just a container, and does not generate the contents itself. Dataset generation is instead carried out using functions in the dingo.gw.dataset.generate_dataset module. Although in practice, datasets are likely to be generated from a settings file using the command line interface, here we describe how to generate one interactively.

A dataset is based on an intrinsic prior and a waveform generator, so we build these as described here.

from dingo.gw.waveform_generator import WaveformGenerator
from bilby.core.prior import PriorDict
from dingo.gw.prior import default_intrinsic_dict
from dingo.gw.domains import FrequencyDomain

domain = FrequencyDomain(f_min=20.0, f_max=1024.0, delta_f=0.125)
wfg = WaveformGenerator(approximant='IMRPhenomXPHM', domain=domain, f_ref=20.0)
prior = PriorDict(default_intrinsic_dict)

/home/docs/checkouts/readthedocs.org/user_builds/dingo-gw/envs/latest/lib/python3.10/site-packages/dingo/gw/__init__.py:3: UserWarning: Wswiglal-redir-stdio:

SWIGLAL standard output/error redirection is enabled in IPython.
This may lead to performance penalties. To disable locally, use:

with lal.no_swig_redirect_standard_output_error():
 ...

To disable globally, use:

lal.swig_redirect_standard_output_error(False)

Note however that this will likely lead to error messages from
LAL functions being either misdirected or lost when called from
Jupyter notebooks.

To suppress this warning, use:

import warnings
warnings.filterwarnings("ignore", "Wswiglal-redir-stdio")
import lal

 import lal

Setting spin_conversion_phase = None. Using phase parameter for conversion to cartesian spins.

We can use the following function to generate sets of parameters and associated waveforms:

from dingo.gw.dataset.generate_dataset import generate_parameters_and_polarizations

parameters, polarizations = generate_parameters_and_polarizations(wfg,
 prior,
 num_samples=100,
 num_processes=1)

Generating dataset of size 100

parameters

 Data pre-processing

Data pre-processing

A sample from a WaveformDataset consists of labeled waveform polarizations \((\theta_{\text{intrinsic}}, (h_+,h_\times))\), represented as a nested dictionary. This must be transformed into noisy detector data \(d_I\) (with additional noise context data) in a form suitable for input to a neural network. Dingo accomplishes this by applying a sequence of transforms [https://pytorch.org/tutorials/beginner/basics/transforms_tutorial.html] to the sample.

A transform is simply a class with a __call__() method, which takes a sample as input and returns a transformed sample. A sequence of transforms can be then be composed [https://pytorch.org/vision/stable/generated/torchvision.transforms.Compose.html#torchvision.transforms.Compose] to build a more complex transform in a modular way. Dingo’s training transform sequence is stored as WaveformDataset.transform, and is applied automatically when elements are accessed through indexing.

GW transform sequence

For Dingo, the flowchart below indicates the sequence of transforms applied to a sample from a WaveformDataset.

 flowchart TB
 sample[Sample from WaveformDataset]
 sample-->extrinsic([SampleExtrinsicParameters])
 subgraph det[Simulate waveforms in detectors]
 direction TB
 det_times[/GetDetectorTimes/]
 det_times-->gnpe_maybe{Using GNPE?}
 gnpe_maybe-- No -->project_det[/ProjectOntoDetectors/]
 gnpe_maybe-- Yes -->gnpe_times([GNPECoalescenceTimes])
 gnpe_times-->project_det
 end
 subgraph noise[Add noise]
 direction TB
 sample_asd([SampleNoiseASD])
 sample_asd-->whiten[/WhitenAndScaleStrain/]
 whiten-->add_noise([AddWhiteNoiseComplex])
 end
 subgraph output[Prepare output]
 direction TB
 standardize[/SelectStandardizeRepackageParameters/]
 standardize-->repackage[/RepackageStrainsAndASDS/]
 repackage-->unpack[/UnpackDict/]
 end
 extrinsic-->det
 det-->noise
 noise-->output
 output-->E[End]

Flowchart for Dingo data-preprocessing pipeline for training, starting from a sample from a WaveformDataset. Transforms with rounded corners include an element of randomness, whereas trapezoidal items are deterministic.

Important

Some pre-processing transforms include an element of randomness. This serves to augment the training data and reduce overfitting.

Extrinsic parameters

The starting point for this chain of transforms is a sample sample with parameters and polarizations sub-dictionaries. The first transform samples the extrinsic parameters, and adds a new sub-dictionary extrinsic_parameters to sample. Extrinsic parameters include sky position (right ascension, declination), polarization, time of coalescense, and luminosity distance (the latter two of which are also considered intrinsic parameters).

	
class dingo.gw.transforms.SampleExtrinsicParameters(extrinsic_prior_dict)

	Sample extrinsic parameters and add them to sample in a separate dictionary.

Detector waveforms

The next sequence of transforms applies the extrinsic parameters to sample["polarizations"] to produce detector waveforms in sample["waveform"]. First it calculates the arrival time \(t_I\) of the waveform in each detector, based on the time of coalescense at geocenter and the sky position, and stores this in sample["extrinsic_parameters"],

	
class dingo.gw.transforms.GetDetectorTimes(ifo_list, ref_time)

	Compute the time shifts in the individual detectors based on the sky
position (ra, dec), the geocent_time and the ref_time.

Important

Dingo models are trained for a fixed set of detectors. This must be selected prior to training, and a new model must be trained if one wishes to analyze data in a different set of detectors. Thus, e.g., separate models must be trained for HL and HLV configurations.

Note

During training, Dingo fixes the orientation of the Earth (and corresponding interferometer positions and orientations) to that at a fixed reference time ref_time. This is so that the model does not have to learn about the rotation of the Earth. This is corrected in post-processing by shifting the inferred right ascension by the difference between the true and reference sidereal times.

Optionally, the times \(t_I\) are perturbed to give new “proxy times” as part of the GNPE algorithm.

	
class dingo.gw.transforms.GNPECoalescenceTimes(ifo_list, kernel, exact_global_equivariance=True, inference=False)

	GNPE [1] Transformation for detector coalescence times.

For each of the detector coalescence times, a proxy is generated by adding a
perturbation epsilon from the GNPE kernel to the true detector time. This proxy is
subtracted from the detector time, such that the overall time shift only amounts to
-epsilon in training. This standardizes the input data to the inference network,
since the applied time shifts are always restricted to the range of the kernel.

To preserve information at inference time, conditioning of the inference network on
the proxies is required. To that end, the proxies are stored in sample[
‘gnpe_proxies’].

We can enforce an exact equivariance under global time translations, by subtracting
one proxy (by convention: the first one, usually for H1 ifo) from all other
proxies, and from the geocent time, see [1]. This is enabled with the flag
exact_global_equivariance.

Note that this transform does not modify the data itself. It only determines the
amount by which to time-shift the data.

[1]: arxiv.org/abs/2111.13139

	Parameters:

	
	ifo_list (bilby.gw.detector.InterferometerList) – List of interferometers.

	kernel (str) – Defines a Bilby prior, to be used for all interferometers.

	exact_global_equivariance (bool = True) – Whether to impose the exact global time translation symmetry.

	inference (bool = False) – Whether to use inference or training mode.

Finally, the detector waveforms \(h_I\) are calculated from the extrinsic parameters. (In the backend, these transforms use the Bilby interferometer libraries.) The contents of the extrinsic_parameters sub-dictionary are then moved into sample["parameters"]; this was essentially a holding place for parameters not yet applied to the waveform.

	
class dingo.gw.transforms.ProjectOntoDetectors(ifo_list, domain, ref_time)

	Project the GW polarizations onto the detectors in ifo_list. This does
not sample any new parameters, but relies on the parameters provided in
sample[‘extrinsic_parameters’]. Specifically, this transform applies the
following operations:

	Rescale polarizations to account for sampled luminosity distance

	Project polarizations onto the antenna patterns using the ref_time and
the extrinsic parameters (ra, dec, psi)

	Time shift the strains in the individual detectors according to the
times <ifo.name>_time provided in the extrinsic parameters.

Noise

Once the detector waveforms have been obtained, noise \(n_I\) must be added to simulate realistic data. First, noise ASDs are selected randomly for each detector from an ASDDataset for the relevant observing run. This is stored in sample["asds"]. For details see ASD dataset.

	
class dingo.gw.transforms.SampleNoiseASD(asd_dataset)

	Sample a random asds for each detector and add them to sample[‘asds’].

The waveform is then whitened based on the PSD, and furthermore scaled by the standard deviation of white noise. This is so that each input to the network will have unit variance, which is important for successful training.

	
class dingo.gw.transforms.WhitenAndScaleStrain(scale_factor)

	Whiten the strain data by dividing w.r.t. the corresponding asds,
and scale it with 1/scale_factor.

In uniform frequency domain the scale factor should be
np.sqrt(window_factor) / np.sqrt(4.0 * delta_f).
It has two purposes:

(*) the denominator accounts for frequency binning
(*) dividing by window factor accounts for windowing of strain data

For whitened waveforms, noise is white, so finally this is randomly sampled and added to sample["waveform"].

	
class dingo.gw.transforms.AddWhiteNoiseComplex

	Adds white noise with a standard deviation determined by self.scale to the
complex strain data.

Output

The final set of transforms prepares the sample for input to the neural network. First, the desired inference parameters are selected. By taking only a subset of parameters, one can train a marginalized posterior model. These parameters are also standardized to have zero mean and unit variance to improve training. (Standardization will be undone in post-processing after inference.) The parameters will then be repackaged into a numpy.ndarray, so that parameter labels are implicit based on ordering.

	
class dingo.gw.transforms.SelectStandardizeRepackageParameters(parameters_dict, standardization_dict, inverse=False, as_type=None, device='cpu')

	This transformation selects the parameters in standardization_dict,
normalizes them by setting p = (p - mean) / std, and repackages the
selected parameters to a numpy array.

	as_type: str = None
	only applies, if self.inverse == True
* if None, data type is kept
* if ‘dict’, dict with
* if ‘pandas’, use pandas.DataFrame

The waveform and asds dictionaries are also repackaged into a single array of shape suitable for input to the network. In particular, the complex frequency domain strain data are decomposed into real and imaginary parts.

	
class dingo.gw.transforms.RepackageStrainsAndASDS(ifos, first_index=0)

	Repackage the strains and the asds into an [num_ifos, 3, num_bins]
dimensional tensor. Order of ifos is provided by self.ifos. By
convention, [:,i,:] is used for:

i = 0: strain.real
i = 1: strain.imag
i = 2: 1 / (asd * 1e23)

Finally, the samples dictionary of arrays is unpacked to a tuple of arrays for parameters and data.

	
class dingo.gw.transforms.UnpackDict(selected_keys)

	Unpacks the dictionary to prepare it for final output of the dataloader.
Only returns elements specified in selected_keys.

When used with a torch DataLoader, the final numpy arrays are automatically transformed into torch tensors.

Building the transforms

The following function will set the transform property of a WaveformDataset to the above transform sequence:

	
dingo.gw.training.set_train_transforms(wfd, data_settings, asd_dataset_path, omit_transforms=None)

	Set the transform attribute of a waveform dataset based on a settings dictionary.
The transform takes waveform polarizations, samples random extrinsic parameters,
projects to detectors, adds noise, and formats the data for input to the neural
network. It also implements optional GNPE transformations.

Note that the WaveformDataset is modified in-place, so this function returns nothing.

	Parameters:

	
	wfd (WaveformDataset) –

	data_settings (dict) –

	asd_dataset_path (str) – Path corresponding to the ASD dataset used to generate noise.

	omit_transforms – List of sub-transforms to omit from the full composition.

The various options are specified by passing an appropriate data_settings dictionary. In practice, these settings will be specified along with other training settings.

Sample data_settings dictionary for configuring a sequence of training transforms. This dictionary includes several options not needed for set_train_transforms, but which are needed as part of other training settings.

waveform_dataset_path: /path/to/waveform_dataset.hdf5 # Contains intrinsic waveforms
train_fraction: 0.95
window: # Needed to calculate window factor for simulated data
 type: tukey
 f_s: 4096
 T: 8.0
 roll_off: 0.4
domain_update:
 f_min: 20.0
 f_max: 1024.0
svd_size_update: 200 # Optionally, reduce the SVD size when decompressing (for performance)
detectors:
 - H1
 - L1
extrinsic_prior: # Sampled at train time
 dec: default
 ra: default
 geocent_time: bilby.core.prior.Uniform(minimum=-0.10, maximum=0.10)
 psi: default
 luminosity_distance: bilby.core.prior.Uniform(minimum=100.0, maximum=1000.0)
ref_time: 1126259462.391
gnpe_time_shifts:
 kernel: bilby.core.prior.Uniform(minimum=-0.001, maximum=0.001)
 exact_equiv: True
inference_parameters: default

	waveform_dataset_path
	Points to the waveform dataset.

	train_fraction
	Fraction of waveform dataset to be used for training. The remainder are used to compute the test loss.

	window
	Specifies the window function to use when FFTing the time-domain data. It is used here to calculate a window factor for simulating data. See the discussion here.

	domain_update (optional)
	Optionally specify new domain properties. These will update the domain associated to the WaveformDataset. They must necessarily describe a domain contained within the original.

	svd_size_update (optional)
	If the WaveformDataset uses SVD compression, optionally use a smaller number of basis elements than stored in the dataset. Decompression of the waveforms is the slowest preprocessing operation, so using this option can improve training speed at the expense of accuracy.

	detectors
	Set the desired GW interferometers for the Dingo model.

	extrinsic_prior
	Specify the extrinsic prior. Default options are available.

	ref_time
	Reference time for the interferometer locations and orientations. See the important note above.

	gnpe_time_shifts (optional)
	GNPE kernel and additional options. See GNPE.

	inference_parameters
	Parameters to infer with the model. At present they must be a subset of sample["parameters"]. By specifying a strict subset, this can be used to marginalize over parameters. The default setting points to dingo.gw.prior.default_inference_parameters:

from dingo.gw.prior import default_inference_parameters
default_inference_parameters

/home/docs/checkouts/readthedocs.org/user_builds/dingo-gw/envs/latest/lib/python3.10/site-packages/dingo/gw/__init__.py:3: UserWarning: Wswiglal-redir-stdio:

SWIGLAL standard output/error redirection is enabled in IPython.
This may lead to performance penalties. To disable locally, use:

with lal.no_swig_redirect_standard_output_error():
 ...

To disable globally, use:

lal.swig_redirect_standard_output_error(False)

Note however that this will likely lead to error messages from
LAL functions being either misdirected or lost when called from
Jupyter notebooks.

To suppress this warning, use:

import warnings
warnings.filterwarnings("ignore", "Wswiglal-redir-stdio")
import lal

 import lal

['chirp_mass',
 'mass_ratio',
 'phase',
 'a_1',
 'a_2',
 'tilt_1',
 'tilt_2',
 'phi_12',
 'phi_jl',
 'theta_jn',
 'luminosity_distance',
 'geocent_time',
 'ra',
 'dec',
 'psi']

 Detector noise

Detector noise

During training, simulated noise \(n_I\) is added to waveforms \(h_I(\theta)\) measured in detectors to produce realistic simulated data,

\[
d_I = h_I(\theta) + n_I.
\]

Dingo assumes this noise to be stationary and Gaussian, thus it is independent in each frequency bin, with variance given by some power spectral density (PSD).

Important

Similar to extrinsic parameters, detector noise is repeatedly sampled during training and added to the simulated signal. This augments the training set with new noise realizations for each epoch, reducing overfitting.

Although noise is mostly stationary and Guassian during an LVK observing run, the PSD in each detector does tend to drift from event to event. In a usual likelihood-based PE run, this is taken into account by estimating the PSD at the time of the event (either using Welch’s method [https://en.wikipedia.org/wiki/Welch%27s_method] on signal-free data surrounding the event, or at the same time as the event using BayesWave [https://git.ligo.org/lscsoft/bayeswave]), and using this in the likelihood integral.

Dingo also estimates the PSD just prior to an event and uses this at inference time in two ways:

	It whitens the data with respect to this PSD.

	It provides the PSD (or rather, the inverse ASD) as context to the neural network.

A suitably trained model can therefore make use of the PSD as needed to generate the posterior.

ASD dataset

To train a model to perform inference conditioned on the noise PSD, it is necessary to not just sample random noise realizations for a given PSD, but also sample the PSD from a distribution for a given observing run. Training in this way is necessary to perform fully amortized inference and account for the variation of PSDs from event to event.

The ASDDataset class stores a set of ASD samples for several detectors, allowing for sampling during training.

As with the noise realizations, a random ASD is chosen from the dataset when preparing each sample during training. This augments the training set compared to fixing the noise ASD for each sample prior to training.

Similarly to the WaveformDataset, the ASDDataset is just a container. Dingo includes routines for building such a dataset from observational data.

Generating an ASDDataset

dingo_generate_asd_dataset

The basic approach is as follows:

	Identify stretches of data within an observing run meeting certain criteria (sufficiently long, without events, and sufficiently high quality, …) or take-in user-specified stretches.

	Fetch data corresponding to these stretches using either

	GWOSC [https://www.gw-openscience.org]

	channels, optionally specified in the settings file.

	Estimate ASDs using Welch’s method on these stretches.

	Save the collection of ASDs.

usage: dingo_generate_asd_dataset [-h] --data_dir DATA_DIR [--settings_file SETTINGS_FILE] [--time_segments_file TIME_SEGMENTS_FILE] [--out_name OUT_NAME] [--verbose]

Generate an ASD dataset based on a settings file.

optional arguments:
 -h, --help show this help message and exit
 --data_dir DATA_DIR Path where the PSD data is to be stored. Must contain a 'settings.yaml' file.
 --settings_file SETTINGS_FILE
 Path to a settings file in case two different datasets are generated in the same directory
 --time_segments_file TIME_SEGMENTS_FILE
 Optional file containing a dictionary of a list of time segments that should be used for estimating PSDs.This has to be a pickle file.
 --out_name OUT_NAME Path to resulting ASD dataset
 --verbose

where the settings file is of the form

dataset_settings:
 f_min: 0
 f_max: 2048
 f_s: 4096
 time_psd: 1024
 T: 8
 time_gap: 0
 window:
 roll_off: 0.4
 type: tukey
 num_psds_max: 20
 channels:
 H1: H1:DCS-CALIB_STRAIN_C02
 L1: L1:DCS-CALIB_STRAIN_C02
 detectors:
 - H1
 - L1
 observing_run: O2
condor:
 env_path: path/to/environment
 num_jobs: 2 # per detector
 num_cpus: 16
 memory_cpus: 16000

Options correspond to the following:

	f_min, f_max (optional)
	Lower and upper frequency range of the ASDs. Defaults to 0 and f_s/2, respectively.

	Sampling rate f_s (Hz)
	This should be at least twice the value of f_max expected to be used.

	Data length time_psd (s)
	The entire length of data from which to estimate a PSD using Welch’s method. Periodigrams are calculated on segments of this, and then averaged using the median method.

	Segment length T (s)
	The length of each segment on which to take the DFT and calculate a periodigram.

	Gap time_gap (s)
	Gap between duration-T segments. E.g., if time_psd=1024, T=8, time_gap=8, then for each PSD, 64 periodigrams are computed, each using data stretches 8 s long, with gaps of 8 s between segments. Segments would then be \([0~\text{s}, 8~\text{s}], [16~\text{s}, 24~\text{s}], \ldots\).

	Window function
	Parameters of the window function used before taking DFT of data segments.

	num_psds_max (optional)
	If set, stop building the dataset after this number of PSDs have been estimated. This setting is useful for building a single-PSD dataset for pretraining a network.

	Channels (optional)
	If set, data will be fetched from these channels, instead of using GWOSC.

	Detectors
	Which detectors (H1, L1, V1, …) to include in the dataset.

	Observing run
	Which observing run to use when estimating PSDs.

	Condor (optional)
	Settings for HTCondor [https://htcondor.readthedocs.io/en/latest/index.html] useful for parallelizing the ASD estimation across condor jobs.

dingo_generate_synthetic_asd_dataset

This method generates a dataset of synthetic ASDs from a dataset of existing ASDs to enhance robustness against ASD distribution shifts. In particular, this allows to generate a dataset of synthetic ASDs that are scaled by a fiducial ASD in order to adapt to a new observing run. This is particularly useful for training Dingo networks at the beginning of an observing run, when the number of training ASDs is limited. It also allows to generate smoother synthetic ASDs that more closely resemble those from BayesWave. The implementation follows the steps explained in this paper [https://inspirehep.net/literature/2182788].

usage: dingo_generate_synthetic_asd_dataset [-h] --asd_dataset ASD_DATASET --settings_file SETTINGS_FILE [--num_processes NUM_PROCESSES] [--out_file OUT_FILE] [--verbose]

Generate a synthetic noise ASD dataset from an existing dataset of real ASDs.

optional arguments:
 -h, --help show this help message and exit
 --asd_dataset ASD_DATASET
 Path to existing ASD dataset to be parameterized and re-sampled
 --settings_file SETTINGS_FILE
 YAML file containing database settings
 --num_processes NUM_PROCESSES
 Number of processes to use in pool for parallel parameterization
 --out_file OUT_FILE Name of file for storing dataset.
 --verbose

with a settings file of the form

parameterization_settings:
 num_spline_positions: 30
 num_spectral_segments: 400
 sigma: 0.14
 delta_f: -1
 smoothen: True
sampling_settings:
 bandwidth_spectral: 0.5
 bandwidth_spline: 0.25
 num_samples: 500
 split_frequencies:
 - 30
 - 100
 rescaling_psd_paths:
 H1: /path/to/rescaling_asd_H1.hdf5
 L1: /path/to/rescaling_asd_L1.hdf5

Options correspond to the following:

	num_spline_positions
	Number of nodes to use for the cubic spline interpolating the broad-band noise PSD.

	num_spectral_segments
	Maximum number of spectral lines to model.

	sigma
	Standard deviation of the Normal distribution parameterizing \(p(\log S_n|z)\).

	delta_f
	If > 0, truncates each spectral line.

	smoothen
	Whether to save the smooth ASDs (True) or the noisy ASDs (False). The noisy synthetic ASDs resemble real ASDs estimated with Welch’s method more closely, while the smooth ASDs are more similar to ASDs generated with BayesWave. (Default: False)

	bandwidth_spectral, bandwidth_spline
	Bandwidths for the KDEs modeling the distribution over spectral lines and broad-band noise, respectively. These determine the width of the resulting distribution.

	num_samples
	Number of synthetic ASDs to generate.

	split_frequencies
	(Set of) frequencies at dividing the broad-band noise into independent segments, e.g. due to different dominant noise sources (shot noise, seismic noise, etc.).

	rescaling_psd_paths
	Paths to ASD datasets for each detector to which the synthetic ASDs should be rescaled, e.g. the PSDs from the target observing run. If the dataset contains multiple ASDs, we use the first one. (Optional; if not provided, no rescaling will be done.)

Data conditioning

Importantly, the variance of white noise in each frequency bin is not 1, but rather

\[
\sigma^2_{\text{white}} = \frac{w}{4\delta f}
\]

where \(\delta f\) is the frequency resolution and \(w\) is a “window factor”.

The denominator in the noise variance is seen to arise most easily in the noise-weighted inner product,

\[
(a | b) = 4 \text{Re} \int_{f_\text{min}}^{f_\text{max}} df\, \frac{a^\ast(f)b(f)}{S_{\text{n}}(f)}
\]

The window factor comes in because a window must be applied to time series data prior to taking the FFT. The windowing is assumed to reduce the power in the noise, but not affect the signal (which is localized away from the edge of the data segment). To simulate this, we add noise with variance scaled by the window factor.

The noise standard deviation is stored in the property FrequencyDomain.noise_std. The window factor is calculated from the data conditioning settings specified in the train settings file.

 Neural network architecture

Neural network architecture

Dingo is based on a method called Neural posterior estimation [https://arxiv.org/abs/1605.06376], see here for an introduction. A central object is the conditional neural density estimator, a deep neural network trained to represent the Bayesian posterior. This section describes the neural network architecture developed in [3], and subsequently used in [4], [5] and [6]. Note that Dingo can easily be extended to different architectures.

Neural spline flow with SVD compression

The architecture consists of two compenents, the embedding network which compresses the high-dimensionl data to a lower dimensional feature vector, and the conditional normalizing flow which estimates the Bayesian posterior based on this feature vector. Both components are trained jointly and end-to-end with the objective descriped here. The network can be build with

from dingo.core.nn.nsf import create_nsf_with_rb_projection_embedding_net

Embedding network

The embedding network compresses the high-dimensional conditioning information (consisting of frequency domain strain and PSD data). The first layer of this network is initialized with an SVD [https://en.wikipedia.org/wiki/Singular_value_decomposition] matrix from a reduced basis built with non-noisy waveforms. This projection filters out the noise that is orthogonal to the signal manifold, and significantly simplifies the task for the neural network.

The initial compression layer is followed by a sequence of residual blocks consisting of dense layers for further compression. Example kwargs:

embedding_net_kwargs = {
 "input_dims": (2, 3, 8033),
 "output_dim": 128,
 "hidden_dims": [
 1024, 1024, 1024, 1024, 1024, 1024, \
 512, 512, 512, 512, 512, 512, \
 256, 256, 256, 256, 256, 256, \
 128, 128, 128, 128, 128, 128
],
 "activation": "elu",
 "dropout": 0.0,
 "batch_norm": True,
 "svd": {
 "num_training_samples": 50000,
 "num_validation_samples": 5000,
 "size": 200,
 }
}

Here, input_dims=(2, 3, 8033) refers to the input dimension, for frequency domain data with 8033 frequency bins and 3 channels (real part, complex part, ASD) in 2 detectors. The embedding network compresses this to output_dim=128 components. The SVD initialization is controlled with the svd argument, and the residual blocks are specified with hidden_dims.

Note

Not all of these arguments have to be set in the configuration file when training dingo. For example, the input_dims argument is automatically filled in based on the specified domain information and number of detectors. Similarly, the context_dim of the flow (see below) is filled in based on the output_dim of the embedding network and the number of GNPE proxies. See the Dingo examples [https://github.com/dingo-gw/dingo/tree/main/examples] for the corresponding configuration files and training commands.

Flow

We use the neural spline flow [https://arxiv.org/abs/1906.04032] as a density estimator. This takes the output of the embedding network as context information and estimates the Bayesian posterior distribution. Example kwargs:

nsf_kwargs = {
 "input_dim": 15,
 "context_dim": 129,
 "num_flow_steps": 30,
 "base_transform_kwargs": {
 "hidden_dim": 512,
 "num_transform_blocks": 5,
 "activation": "elu",
 "dropout_probability": 0.0,
 "batch_norm": True,
 "num_bins": 8,
 "base_transform_type": "rq-coupling",
 },
}

This creates a neural spline flow with input_dim=15 parameters, conditioned on a 129 dimensional context vector, corresponding to the 128 dimensional output of the embedding network and one GNPE proxy variable. The neural spline flow consists of num_flow_steps=30 layers, for which the transformation is specified with base_transform_kwargs.

nde = create_nsf_with_rb_projection_embedding_net(nsf_kwargs, embedding_net_kwargs)

 Training

Training

Training a network can require a significant amount of time (for production models, typically a week with a fast GPU). We therefore expect that this will almost always be done non-interactively using a command-line script. Dingo offers two options, dingo_train and dingo_train_condor, depending on whether your GPU is local or cluster-based.

Both of these scripts take as main argument a settings file, which specifies options relating to Data pre-processing, training strategy, Neural network architecture, hardware, and checkpointing. They produce a trained model in PyTorch .pt format, and they save checkpoints and the training history. The settings file is furthermore saved within the model files for reproducibility and to be able to resume training from a checkpoint. Finally, all precursor settings files (for the waveform or noise datasets) are also saved with the model.

Settings file

Example train_settings.yaml file. This is also available in the examples/ folder. The specific settings listed will train a production-size network, taking about a week on an NVIDIA A100. Consider reducing some model hyperparameters for experimentation.

data:
 waveform_dataset_path: /path/to/waveform_dataset.hdf5 # Contains intrinsic waveforms
 train_fraction: 0.95
 window:
 type: tukey
 f_s: 4096
 T: 8.0
 roll_off: 0.4
 domain_update:
 f_min: 20.0
 f_max: 1024.0
 svd_size_update: 200
 detectors:
 - H1
 - L1
 extrinsic_prior:
 dec: default
 ra: default
 geocent_time: bilby.core.prior.Uniform(minimum=-0.10, maximum=0.10)
 psi: default
 luminosity_distance: bilby.core.prior.Uniform(minimum=100.0, maximum=1000.0)
 ref_time: 1126259462.391
 gnpe_time_shifts:
 kernel: bilby.core.prior.Uniform(minimum=-0.001, maximum=0.001)
 exact_equiv: True
 inference_parameters: default

model:
 type: nsf+embedding
 nsf_kwargs:
 num_flow_steps: 30
 base_transform_kwargs:
 hidden_dim: 512
 num_transform_blocks: 5
 activation: elu
 dropout_probability: 0.0
 batch_norm: True
 num_bins: 8
 base_transform_type: rq-coupling
 embedding_net_kwargs:
 output_dim: 128
 hidden_dims: [1024, 1024, 1024, 1024, 1024, 1024,
 512, 512, 512, 512, 512, 512,
 256, 256, 256, 256, 256, 256,
 128, 128, 128, 128, 128, 128]
 activation: elu
 dropout: 0.0
 batch_norm: True
 svd:
 num_training_samples: 20000
 num_validation_samples: 5000
 size: 200

Training is divided in stages. They each require all settings as indicated below.
training:
 stage_0:
 epochs: 300
 asd_dataset_path: /path/to/asds_fiducial.hdf5
 freeze_rb_layer: True
 optimizer:
 type: adam
 lr: 0.0001
 scheduler:
 type: cosine
 T_max: 300
 batch_size: 64

 stage_1:
 epochs: 150
 asd_dataset_path: /path/to/asds.hdf5
 freeze_rb_layer: False
 optimizer:
 type: adam
 lr: 0.00001
 scheduler:
 type: cosine
 T_max: 150
 batch_size: 64

Local settings that have no impact on the final trained network.
local:
 device: cpu # Change this to 'cuda' for training on a GPU.
 num_workers: 6
wandb:
project: dingo
group: O4
 runtime_limits:
 max_time_per_run: 36000
 max_epochs_per_run: 500
 checkpoint_epochs: 10
condor:
bid: 100
num_cpus: 16
memory_cpus: 128000
num_gpus: 1
memory_gpus: 8000

The train settings file is grouped into four sections:

data_settings

These settings point to a saved dataset of waveform polarizations and describe the transforms to obtain detector waveforms. A detailed description of these settings is available here.

model

This describes the model architecture, including network type and hyperparameters. All of these settings are described in the section on Neural network architecture.

training

This describes the training strategy. Training is divided into stages, each of which can differ to some extent. Stages are numbered (stage_0, stage_1, …) and executed in this order. Each stage is defined by the following settings:

	epochs
	Total number of training epochs for the stage. The network sees the entire training set once per epoch.

	asd_dataset_path
	Points to an ASDDataset file. Each stage can have its own ASD dataset, which is useful for implementing a pre-training stage with fixed ASD and a fine-tuning stage with variable ASD.

	freeze_rb_layer
	Whether to freeze the first layer of the embedding network in nsf+embedding models. This layer is seeded with reduced (SVD) basis vectors, so freezing this layer during pre-training simply projects data onto the basis coefficients. In the fine-tuning stage, when other weights are more stable, unfreezing this can be useful.

	optimizer
	Specify optimizer [https://pytorch.org/docs/stable/optim.html] type and parameters such as initial learning rate.

	scheduler
	Use a learning rate scheduler [https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate] to reduce the learning rate over time. This can improve overall optimization.

	batch_size
	Number of training samples per mini-batch. For a training dataset of size \(N\), then each epoch will consist of \(N / \text{batch_size}\) batches. Generally training will be faster for a larger batch size, but will require additional iterations.

Important

The stage-training framework allows for separate pre-training and fine-tuning stages. We found that having a pre-training stage where we freeze certain network weights and fix the noise ASD improves overall training results.

local

The local settings are the only group that have no impact on the final trained network. Indeed, they are not even saved in the .pt files; rather they are split off and saved in a new file local_settings.yaml.

	device
	cpu or cuda. Training on a GPU with CUDA is highly recommended.

	num_workers
	Number of CPU worker processes to use for pre-processing training data before copying to the GPU. Data pre-processing (inluding decompression, projection to detectors, and noise generation) is quite expensive, so using 16 or 32 processes is recommended, otherwise this can become a bottleneck. We recommend monitoring the GPU utilization percentage as well as time spent on pre-processing (output during training) to fine-tune this number.

	wandb
	Settings for Weights & Biases [https://wandb.ai/site]. If you have an account, you can use this to track your training progress and compare different runs.

	runtime_limits
	Maximum time (in seconds) or maximum number of epochs per run. Using this could make sense in a cluster environment.

	checkpoint_epochs
	Dingo saves a temporary checkpoint in model_latest.py after every epoch, but this is later overwritten by the next checkpoint. This setting saves a permanent checkpoint after the specified number of epochs. Having these checkpoints can help in recovering from training failures that do not result in program termination.

	condor
	Settings for HTCondor [https://htcondor.readthedocs.io/en/latest/index.html]. The condor script will (re)submit itself according to these options.

Command-line scripts

dingo_train

On a local machine, simply pass the settings file (or checkpoint) and an output directory to dingo_train. It will train until complete, or until a runtime limit is reached.

usage: dingo_train [-h] [--settings_file SETTINGS_FILE] --train_dir TRAIN_DIR [--checkpoint CHECKPOINT]

Train a neural network for gravitational-wave single-event inference.

This program can be called in one of two ways:
 a) with a settings file. This will create a new network based on the
 contents of the settings file.
 b) with a checkpoint file. This will resume training from the checkpoint.

optional arguments:
 -h, --help show this help message and exit
 --settings_file SETTINGS_FILE
 YAML file containing training settings.
 --train_dir TRAIN_DIR
 Directory for Dingo training output.
 --checkpoint CHECKPOINT
 Checkpoint file from which to resume training.

dingo_train_condor

On a cluster using HTCondor, use dingo_train_condor. This calls itself recursively as follows:

	The first time you call it, use the flag --start-submission. This creates a condor submission file submission_file.sub that again calls the executable dingo_train_condor (now without the flag) and submits it. This will run dingo_train_condor directly on the cluster node that is assigned.

	On the cluster node, dingo_train_condor first trains the network until done or a runtime limit is reached (be careful to set this shorter than the condor time limit). Then it creates a new submission file that once again calls dingo_train_condor, and submits it. This will resume the run on a new node, and repeat.

usage: dingo_train_condor [-h] --train_dir TRAIN_DIR [--checkpoint CHECKPOINT] [--start_submission]

optional arguments:
 -h, --help show this help message and exit
 --train_dir TRAIN_DIR
 Directory for Dingo training output.
 --checkpoint CHECKPOINT
 --start_submission

Output

Output from training is stored in the TRAIN_DIR folder passed to the training scripts. This consists of the following:

	model_latest.pt checkpoints every epoch (overwritten);

	model_XXX.pt checkpoints where XXX is the epoch number, every checkpoint_epochs epochs;

	model_stage_X.pt at the end of training stage X;

	history.txt with columns (epoch number, train loss, test loss, learning rate);

	svd_L1.hdf5, …, storing SVD basis information used for seeding the embedding network;

	local_settings.yaml with local settings for the run (not stored with checkpoints).

The .pt and .hdf5 files may all be inspected using dingo_ls. This prints all the settings, as well as diagnostic information for SVD bases. The saved settings include all the settings provided in the settings file, as well as several derived quantities, such as parameter standardizations, additional context parameters (for GNPE), etc.

Modifying a checkpoint

Occasionally it may be necessary to change a setting of a partially trained model. For example, a model may have been successfully pre-trained, but the fine-tuning failed, and one may wish to change the fine-tuning settings without starting from scratch. Since the model setting are all stored with the checkpoint, they just need to be changed.

The script dingo_append_training_stage allows for appending a model stage or replacing an existing planned stage. It will fail if the stage has already begun training, so be sure to use it on a sufficiently early checkpoint.

usage: dingo_append_training_stage [-h] --checkpoint CHECKPOINT --stage_settings_file STAGE_SETTINGS_FILE --out_file OUT_FILE [--replace REPLACE]

optional arguments:
 -h, --help show this help message and exit
 --checkpoint CHECKPOINT
 --stage_settings_file STAGE_SETTINGS_FILE
 --out_file OUT_FILE
 --replace REPLACE

For more detailed adjustments to the training settings the script one can use the script compatibility/update_model_metadata.py.

usage: update_model_metadata.py [-h] --checkpoint CHECKPOINT --key KEY [KEY ...] --value VALUE

optional arguments:
 -h, --help show this help message and exit
 --checkpoint CHECKPOINT
 --key KEY [KEY ...]
 --value VALUE

Warning

Modifications to model metadata can easily break things. Do not use this unless completely sure what you are doing!

 Inference

Inference

With a trained network, inference can be performed on real data by executing following on the command line:

dingo_analyze_event
 --model model.pt
 --gps_time_event gps_time_event
 --num_samples num_samples
 --batch_size batch_size

This will download data from GWOSC at the specified time, apply the data conditioning consistent with the trained Dingo model and transform to frequency domain, and generate the requested number of posterior samples. It will save them in a file dingo_samples-gps_time_event.hdf5, along with all settings used in upstream components of Dingo (the waveform dataset, noise dataset, and model training) and the data analyzed.

The dingo_analyze_event script can also be used to analyze an injection.

The Sampler class

Under the hood, the inference script uses the Sampler class, or more specifically, the GWSampler class, which inherits from it.

	
class dingo.gw.inference.gw_samplers.GWSampler(**kwargs)

	Bases: GWSamplerMixin, Sampler

Sampler for gravitational-wave inference using neural posterior estimation.
Augments the base class by defining transform_pre and transform_post to prepare
data for the inference network.

	transform_pre :
	
	Whitens strain.

	Repackages strain data and the inverse ASDs (suitably scaled) into a torch
tensor.

	transform_post :
	
	Extract the desired inference parameters from the network output (
array-like), de-standardize them, and repackage as a dict.

Also mixes in GW functionality for building the domain and correcting the reference
time.

Allows for conditional and unconditional models, and draws samples from the model
based on (optional) context data.

This is intended for use either as a standalone sampler, or as a sampler producing
initial sample points for a GNPE sampler.

	Parameters:

	kwargs – Keyword arguments that are forwarded to the superclass.

	
property context

	Data on which to condition the sampler. For injections, there should be a
‘parameters’ key with truth values.

	
property event_metadata

	Metadata for data analyzed. Can in principle influence any post-sampling
parameter transformations (e.g., sky position correction), as well as the
likelihood detector positions.

	
log_prob(samples: DataFrame) → ndarray

	Calculate the model log probability at specific sample points.

	Parameters:

	samples (pd.DataFrame) – Sample points at which to calculate the log probability.

	Return type:

	np.array of log probabilities.

	
run_sampler(num_samples: int, batch_size: int | None = None)

	Generates samples and stores them in self.samples. Conditions the model on
self.context if appropriate (i.e., if the model is not unconditional).

If possible, it also calculates the log_prob and saves it as a column in
self.samples. When using GNPE it is not possible to obtain the log_prob due to
the many Gibbs iterations. However, in the case of just one iteration, and when
starting from a sampler for the proxy, the GNPESampler does calculate the
log_prob.

Allows for batched sampling, e.g., if limited by GPU memory. Actual sampling
for each batch is performed by _run_sampler(), which will differ for Sampler
and GNPESampler.

	Parameters:

	
	num_samples (int) – Number of samples requested.

	batch_size (int, optional) – Batch size for sampler.

	
to_result() → Result

	Export samples, metadata, and context information to a Result instance,
which can be used for saving or, e.g., importance sampling, training an
unconditional flow, etc.

	Return type:

	Result

This is instantiated based on a PosteriorModel. To draw samples, the context property must first be set to the data to be analyzed. For gravitational waves this should be a dictionary with the following keys:

	waveform
	(unwhitened) strain data in each detector

	asds
	noise ASDs estimated in each detector at the time of the event

	parameters (optional)
	for injections, the true parameters of the signal (for saving; ignored for sampling)

Once this is set, the run_sampler() method draws the requested samples from the posterior conditioned on the context. It applies some post-processing (to de-standardize the data, and to correct for the rotation of the Earth between the network reference time and the event time), and then stores the result as a DataFrame in GWSampler.samples. The DataFrame contains columns for each inference parameter, as well as the log probability of the sample under the posterior model.

The GWSampler.metadata attribute contains all settings that went into producing the samples, including training datasets, network training settings, event metadata (for real events) and possible injection parameters. Finally, the to_samples_dataset() method returns a SamplesDataset containing all results, including the samples, settings, and context. This can be saved easily as HDF5.

Injections

Injections (i.e., simulated data) are produced using the Injection class. It includes options for fixed or random parameters (drawn from a prior), and it returns injections in a format that can be directly set as GWSampler.context.

	
class dingo.gw.injection.Injection(prior, **gwsignal_kwargs)

	Bases: GWSignal

Produces injections of signals (with random or specified parameters) into stationary
Gaussian noise. Output is not whitened.

	Parameters:

	
	prior (PriorDict) – Prior used for sampling random parameters.

	gwsignal_kwargs – Arguments to be passed to GWSignal base class.

	
classmethod from_posterior_model_metadata(metadata)

	Instantiate an Injection based on a posterior model. The prior, waveform
settings, etc., will all be consistent with what the model was trained with.

	Parameters:

	metadata (dict) – Dict which you can get via PosteriorModel.metadata

	
injection(theta)

	Generate an injection based on specified parameters.

This is a signal + noise consistent with the amplitude spectral density in
self.asd. If self.asd is an ASDDataset, then it uses a random ASD from this
dataset.

Data are not whitened.

	Parameters:

	theta (dict) – Parameters used for injection.

	Returns:

	
	keys:
	waveform: data (signal + noise) in each detector
extrinsic_parameters: {}
parameters: waveform parameters
asd (if set): amplitude spectral density for each detector

	Return type:

	dict

	
random_injection()

	Generate a random injection.

This is a signal + noise consistent with the amplitude spectral density in
self.asd. If self.asd is an ASDDataset, then it uses a random ASD from this
dataset.

Data are not whitened.

	Returns:

	
	keys:
	waveform: data (signal + noise) in each detector
extrinsic_parameters: {}
parameters: waveform parameters
asd (if set): amplitude spectral density for each detector

	Return type:

	dict

Hint

The convenience class method from_posterior_model_metadata() instantiates an Injection with all of the settings that went into the posterior model. To this class pass the PosteriorModel.metadata dictionary. It should produce injections that perfectly match the characteristics of the training data (waveform approximant, data conditioning, noise characteristics, etc.). This can be very useful for testing a trained model.

Important

Repeated calls to Injection.injection(), even with the same parameters, will produce injections with different noise realizations (which therefore lead to different posteriors). For repeated analyses of the exact same injection (e.g., with different models or codes) it is necessary to either save the injection for re-use or fix a random seed.

 GNPE

GNPE

GNPE (Gibbs- or Group-Equivariant Neural Posterior Estimation) is an algorithm that can generate significantly improved results by incorporating known physical symmetries into NPE.[1] The aim is to simplify the data seen by the network by using the symmetries to transform certain parameters to “standardized” values. This simplifies the learning task of the network. At inference time, the standardizing transform is initially unknown, so we use Gibbs sampling to simultaneously learn the transform (along with the rest of the parameters) and apply it to simplify the data.

For gravitational waves, we use GNPE to standardize the times of arrival of the signal in the individual interferometers. (This corresponds to translations of the time of arrival at geocenter, and approximate sky rotations.) In frequency domain, time translations correspond to multiplication of the data by \(e^{-2\pi i f \Delta t}\), and a standard NPE network would have to learn to interpret such transformations consistent with the prior from the data. We found this to be a challenging learning task, which limited inference performance on the other parameters. Instead, GNPE leverages our knowledge of the time translations to build a network that is only required to interpret a much narrower window of arrival times.

We now provide a brief description of the GNPE method. Readers more interested in getting started with GNPE may skip to Usage below.

Description of method

GNPE allows us to incorporate knowledge of joint symmetries of data and parameters. That is, if a parameter (e.g., coalescence time) is transformed by a certain amount (\(\Delta t\)), then there is a corresponding transformation of the data (multiplication by \(e^{-2\pi i f \Delta t}\)) such that the transformed data is equally likely to occur under the transformed parameter,

\[
p(t_c | d) = p(t_c + \Delta t | d\cdot e^{-2\pi i f \Delta t}).
\]

It is based on two ideas:

Gibbs + NPE

Gibbs sampling [https://en.wikipedia.org/wiki/Gibbs_sampling] is an algorithm for obtaining samples from a joint distribution \(p(x, y)\) if we are able to sample directly from each of the conditionals, \(p(x|y)\) and \(p(y|x)\). Starting from some point \(y_0\), we construct a Markov chain \(\{(x_i, y_i)\}\) by sampling

	\(x_i \sim p(x_i | y_{i-1})\),

	\(y_i \sim p(y_i | x_i)\),

and repeating until the chain is converged. The stationary distribution of the Markov chain is then \(p(x, y)\).

[image: _images/gibbs_figure.jpg]

Illustration of Gibbs sampling for a distribution \(p(x, y)\).

Gibbs sampling can be combined with NPE by first introducing blurred “proxy” versions of a subset of parameters, which we denote \(\hat\theta\) i.e., \(\hat\theta \sim p(\hat\theta | \theta)\) where \(p(\hat\theta | \theta)\) is defined by a blurring kernel. For example, for GWs we take \(\hat t_I = t_I + \epsilon_I\), where \(\epsilon_I \sim \text{Unif}(-1~\text{ms}, 1~\text{ms})\). We then train a network to model the posterior, but now conditioned also on \(\hat \theta\), i.e., \(p(\theta | d, \hat\theta)\). We can then apply Gibbs sampling to obtain samples from the joint distribution \(p(\theta, \hat \theta | d)\), since we are able to sample individually from the conditional distributions:

	We can sample from \(p(\hat\theta | \theta)\) since we defined the blurring kernel.

	We can sample from \(p(\theta | d, \hat\theta)\) since we are modeling it using NPE.

Finally, we can drop \(\hat \theta\) from the samples to obtain the desired posterior samples.

The trick now is that since \(p(\theta | d, \hat\theta)\) is conditional on \(\hat \theta\), we can apply any \(\hat\theta\)-dependent transformation to \(d\). Returning to the time translations, \(\hat t_I\) is a good approximation to \(t_I\), so we apply the inverse time shift \(d_I \to d_I\cdot e^{2 \pi i f \hat t_I}\), which brings \(d_I\) into a close approximation to having coalescence time \(0\) in each detector. This means that the network never sees any data with merger time further than \(1~\text{ms}\) from \(0\), greatly simplifying the learning task.

In practice, we generate many Monte Carlo chains in parallel—one for each desired sample and with different starting points—and keep only the final sample from each chain—rather than generating one long chain. Each individual chain in this ensemble is unlikely to converge, but if the individual chains are initialized from a distribution sufficiently close to \(p(\hat \theta | d)\) then the collection of final samples from each chain should be a good approximation to samples from \(p(\theta, \hat\theta|d)\).

Group-equivariant NPE

So far we have described how Gibbs sampling together with NPE can simplify data by allowing any \(\hat\theta\)-dependent transformation of \(d\), simplifying the data distribution. If we know the data and parameters to be equivariant under a particular transformation, however, we can go a step further and enforce this exactly. To do so, we simply drop the dependence of the neural density estimator on \(\hat\theta\).

For gravitational waves, the overall time translation symmetry (in each detector) of the time of coalescence at geocenter is an exact symmetry, so we fully enforce this. The sky rotation, however, corresponds to an approximate symmetry: it shifts the time of coalescence in each detector, but a subleading effect is to change angle of incidence on a detector and hence the combination of polarizations observed. For this latter symmetry, we simply do not drop the proxy dependence.

Tip

GNPE is a generic method to incorporate symmetries into NPE:

	Any symmetry (exact or approximate) connecting data and parameters

	Any architecture, as it just requires (at most) conditioning on the proxy variables

As far as we are aware, GNPE is the only way to incorporate symmetries connecting data and parameters into architectures such as normalizing flows.

Usage

Training

To use GNPE for GW inference one must train two Dingo models:

	An initialization network modeling \(p(t_I | d)\). This gives the initial guess of the proxy variables for the staring point of the Gibbs sampler. Since this is only modeling two or three parameters and it does not need to give perfect results, this network can also be much smaller than typical Dingo networks.

For an HL detector network, to infer just the detector coalescence times, set this in the train configuration.

data:
 inference_parameters: [H1_time, L1_time]

	A main “GNPE” network, conditional on the proxy variables, \(p(\theta | d, \hat t_I)\). Implicitly in this expression, the data are transformed by the proxies, and the exact time-translation symmetry is enforced.

To condition this network on the correct proxies, we configure it to use GNPE in the settings file.

data:
 gnpe_time_shifts:
 kernel: bilby.core.prior.Uniform(minimum=-0.001, maximum=0.001)
 exact_equiv: True

This sets the blurring kernel to be \(\text{Unif}(-1~\text{ms}, 1~\text{ms})\) for all \(\hat t_I\), and it specifies to enforce the overall time of coalescence symmetry exactly. Dingo will determine automatically from the detectors setting which proxy variables to condition on.

Complete example config files for both networks are provided in the /examples folder.

Inference

The inference script must be pointed to both trained networks in order to sample using GNPE.

dingo_analyze_event
 --model model
 --model_init model_init
 --gps_time_event gps_time_event
 --num_samples num_samples
 --num_gnpe_iterations num_gnpe_iterations
 --batch_size batch_size

The number of Gibbs iterations is also specified here (typically 30 is appropriate). This script will save the final samples from each Gibbs chain.

The GNPESampler class

The inference script above uses the GWSamplerGNPE class, which is based on GNPESampler,

	
class dingo.core.samplers.GNPESampler(model: PosteriorModel, init_sampler: Sampler, num_iterations: int = 1)

	Bases: Sampler

Base class for GNPE sampler. It wraps a PosteriorModel and a standard Sampler for
initialization. The former is used to generate initial samples for Gibbs sampling.

A GNPE network is conditioned on additional “proxy” context theta^, i.e.,

p(theta | theta^, d)

The theta^ depend on theta via a fixed kernel p(theta^ | theta). Combining these
known distributions, this class uses Gibbs sampling to draw samples from the joint
distribution,

p(theta, theta^ | d)

The advantage of this approach is that we are allowed to perform any transformation of
d that depends on theta^. In particular, we can use this freedom to simplify the
data, e.g., by aligning data to have merger times = 0 in each detector. The merger
times are unknown quantities that must be inferred jointly with all other
parameters, and GNPE provides a means to do this iteratively. See
https://arxiv.org/abs/2111.13139 for additional details.

Gibbs sampling breaks access to the probability density, so this must be recovered
through other means. One way is to train an unconditional flow to represent p(theta^
| d) for fixed d based on the samples produced through the GNPE Gibbs sampling.
Starting from these, a single Gibbs iteration gives theta from the GNPE network,
along with the probability density in the joint space. This is implemented in
GNPESampler provided the init_sampler provides proxies directly and num_iterations
= 1.

Attributes (beyond those of Sampler)

	init_samplerSampler
	Used for providing initial samples for Gibbs sampling.

	num_iterationsint
	Number of Gibbs iterations to perform.

iteration_tracker : IterationTracker not set up
remove_init_outliers : float not set up

	param model:

	

	type model:

	PosteriorModel

	param init_sampler:

	Used for generating initial samples

	type init_sampler:

	Sampler

	param num_iterations:

	Number of GNPE iterations to be performed by sampler.

	type num_iterations:

	int

	
property context

	Data on which to condition the sampler. For injections, there should be a
‘parameters’ key with truth values.

	
property event_metadata

	Metadata for data analyzed. Can in principle influence any post-sampling
parameter transformations (e.g., sky position correction), as well as the
likelihood detector positions.

	
log_prob(samples: DataFrame) → ndarray

	Calculate the model log probability at specific sample points.

	Parameters:

	samples (pd.DataFrame) – Sample points at which to calculate the log probability.

	Return type:

	np.array of log probabilities.

	
property num_iterations

	The number of GNPE iterations to perform when sampling.

	
run_sampler(num_samples: int, batch_size: int | None = None)

	Generates samples and stores them in self.samples. Conditions the model on
self.context if appropriate (i.e., if the model is not unconditional).

If possible, it also calculates the log_prob and saves it as a column in
self.samples. When using GNPE it is not possible to obtain the log_prob due to
the many Gibbs iterations. However, in the case of just one iteration, and when
starting from a sampler for the proxy, the GNPESampler does calculate the
log_prob.

Allows for batched sampling, e.g., if limited by GPU memory. Actual sampling
for each batch is performed by _run_sampler(), which will differ for Sampler
and GNPESampler.

	Parameters:

	
	num_samples (int) – Number of samples requested.

	batch_size (int, optional) – Batch size for sampler.

	
to_result() → Result

	Export samples, metadata, and context information to a Result instance,
which can be used for saving or, e.g., importance sampling, training an
unconditional flow, etc.

	Return type:

	Result

In addition to storing a PosteriorModel, a GNPESampler also stores a second Sampler instance, which is based on the initialization network. When run_sampler() is called, it first generates samples from the initialization network, perturbs them with the kernel to obtain proxy samples, and then performs num_iterations Gibbs steps to obtain the final samples.

[1]
Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Deistler, Bernhard Schölkopf, and Jakob H. Macke. Group equivariant neural posterior estimation. International Conference on Learning Representations, 2022. arXiv:2111.13139 [https://arxiv.org/abs/2111.13139].

 The Result class

The Result class

The Result class stores the output of a Sampler run, namely a collection of samples. It contains several methods for operating on the samples, including for importance sampling, plotting, and density recovery:

	
class dingo.gw.result.Result(**kwargs)

	Bases: Result

A dataset class to hold a collection of gravitational-wave parameter samples and
perform various operations on them.

Compared to the base class, this class implements the domain, prior,
and likelihood. It also includes a method for sampling the binary reference phase
parameter based on the other parameters and the likelihood.

	Attributes:
	
	samplespd.Dataframe
	Contains parameter samples, as well as (possibly) log_prob, log_likelihood,
weights, log_prior, delta_log_prob_target.

	domainDomain
	The domain of the data (e.g., FrequencyDomain), needed for calculating
likelihoods.

	priorPriorDict
	The prior distribution, used for importance sampling.

	likelihoodLikelihood
	The Likelihood object, needed for importance sampling.

	contextdict
	Context data from which the samples were produced (e.g., strain data, ASDs).

	metadatadict
	Metadata inherited from the Sampler object. This describes the neural
networks and sampling settings used.

	event_metadatadict
	Metadata for the event analyzed, including time, data conditioning, channel,
and detector information.

	log_evidencefloat
	Calculated log(evidence) after importance sampling.

	log_evidence_stdfloat (property)
	Standard deviation of the log(evidence)

	effective_sample_size, n_efffloat (property)
	Number of effective samples, (sum_i w_i)^2 / sum_i w_i^2

	sample_efficiencyfloat (property)
	Number of effective samples / Number of samples

	synthetic_phase_kwargsdict
	kwargs describing the synthetic phase sampling.

For constructing, provide either file_name, or dictionary containing data and
settings entries, or neither.

	Parameters:

	
	file_name (str) – HDF5 file containing a dataset

	dictionary (dict) – Contains settings and data entries. The data keys should be the same as
save_keys

	data_keys (list) – Variables that should be saved / loaded. This allows for class to store
additional variables beyond those that are saved. Typically, this list
would be provided by any subclass.

	
get_samples_bilby_phase()

	Convert the spin angles phi_jl and theta_jn to account for a difference in
phase definition compared to Bilby.

	Returns:

	Samples

	Return type:

	pd.DataFrame

	
importance_sample(num_processes: int = 1, **likelihood_kwargs)

	Calculate importance weights for samples.

Importance sampling starts with samples have been generated from a proposal
distribution q(theta), in this case a neural network model. Certain networks
(i.e., non-GNPE) also provide the log probability of each sample,
which is required for importance sampling.

Given the proposal, we re-weight samples according to the (un-normalized)
target distribution, which we take to be the likelihood L(theta) times the
prior pi(theta). This gives sample weights

w(theta) ~ pi(theta) L(theta) / q(theta),

where the overall normalization does not matter (and we take to have mean 1).
Since q(theta) enters this expression, importance sampling is only possible
when we know the log probability of each sample.

As byproducts, this method also estimates the evidence and effective sample
size of the importance sampled points.

This method modifies the samples pd.DataFrame in-place, adding new columns for
log_likelihood, log_prior, and weights. It also stores the log_evidence as an
attribute.

	Parameters:

	
	num_processes (int) – Number of parallel processes to use when calculating likelihoods. (This is
the most expensive task.)

	likelihood_kwargs (dict) – kwargs that are forwarded to the likelihood constructor. E.g., options for
marginalization.

	
classmethod merge(parts)

	Merge several Result instances into one. Check that they are compatible,
in the sense of having the same metadata. Finally, calculate a new log evidence
for the combined result.

This is useful when recombining separate importance sampling jobs.

	Parameters:

	parts (list[Result]) – List of sub-Results to be combined.

	Return type:

	Combined Result.

	
parameter_subset(parameters)

	Return a new object of the same type, with only a subset of parameters. Drops
all other columns in samples DataFrame as well (e.g., log_prob, weights).

	Parameters:

	parameters (list) – List of parameters to keep.

	Return type:

	Result

	
property pesummary_prior

	The prior in a form suitable for PESummary.

By convention, Dingo stores all times relative to a reference time, typically
the trigger time for an event. The prior returned here corrects for that offset to
be consistent with other codes.

	
property pesummary_samples

	Samples in a form suitable for PESummary.

These samples are adjusted to undo certain conventions used internally by
Dingo:

	Times are corrected by the reference time t_ref.

	Samples are unweighted, using a fixed random seed for sampling importance

resampling.
* The spin angles phi_jl and theta_jn are transformed to account for a
difference in phase definition.
* Some columns are dropped: delta_log_prob_target, log_prob

	
plot_corner(parameters=None, filename='corner.pdf')

	Generate a corner plot of the samples.

	Parameters:

	
	parameters (list[str]) – List of parameters to include. If None, include all parameters.
(Default: None)

	filename (str) – Where to save samples.

	
plot_log_probs(filename='log_probs.png')

	Make a scatter plot of the target versus proposal log probabilities. For the
target, subtract off the log evidence.

	
plot_weights(filename='weights.png')

	Make a scatter plot of samples weights vs log proposal.

	
print_summary()

	Display the number of samples, and (if importance sampling is complete) the log
evidence and number of effective samples.

	
reset_event(event_dataset)

	Set the Result context and event_metadata based on an EventDataset.

If these attributes already exist, perform a comparison to check for changes.
Update relevant objects appropriately. Note that setting context and
event_metadata attributes directly would not perform these additional checks and
updates.

	Parameters:

	event_dataset (EventDataset) – New event to be used for importance sampling.

	
sample_synthetic_phase(synthetic_phase_kwargs, inverse: bool = False)

	Sample a synthetic phase for the waveform. This is a post-processing step
applicable to samples theta in the full parameter space, except for the phase
parameter (i.e., 14D samples). This step adds a phase parameter to the samples
based on likelihood evaluations.

A synthetic phase is sampled as follows.

	Compute and cache the modes for the waveform mu(theta, phase=0) for
phase 0, organize them such that each contribution m transforms as
exp(-i * m * phase).

	Compute the likelihood on a phase grid, by computing mu(theta, phase) from
the cached modes. In principle this likelihood is exact, however, it can
deviate slightly from the likelihood computed without cached modes for
various technical reasons (e.g., slightly different windowing of cached
modes compared to full waveform when transforming TD waveform to FD).
These small deviations can be fully accounted for by importance sampling.
Note: when approximation_22_mode=True, the entire waveform is assumed
to transform as exp(2i*phase), in which case the likelihood is only exact
if the waveform is fully dominated by the (2, 2) mode.

	Build a synthetic conditional phase distribution based on this grid. We
use an interpolated prior distribution bilby.core.prior.Interped,
such that we can sample and also evaluate the log_prob. We add a constant
background with weight self.synthetic_phase_kwargs to the kde to make
sure that we keep a mass-covering property. With this, the importance
sampling will yield exact results even when the synthetic phase conditional
is just an approximation.

Besides adding phase samples to self.samples[‘phase’], this method also modifies
self.samples[‘log_prob’] by adding the log_prob of the synthetic phase
conditional.

This method modifies self.samples in place.

	Parameters:

	
	synthetic_phase_kwargs (dict) –
	This should consist of the kwargs
	approximation_22_mode (optional)
num_processes (optional)
n_grid
uniform_weight (optional)

	inverse (bool, default False) – Whether to apply instead the inverse transformation. This is used prior to
calculating the log_prob. In inverse mode, the posterior probability over
phase is calculated for given samples. It is stored in self.samples[
‘log_prob’].

	
sampling_importance_resampling(num_samples=None, random_state=None)

	Generate unweighted posterior samples from weighted ones. New
samples are sampled with probability proportional to the sample weight.
Resampling is done with replacement, until the desired number of
unweighted samples is obtained.

	Parameters:

	
	num_samples (int) – Number of samples to resample.

	random_state (int or None) – Sampling seed.

	Returns:

	Unweighted samples

	Return type:

	pd.Dataframe

	
split(num_parts)

	Split the Result into a set of smaller results. The samples are evenly divided
among the sub-results. Additional information (metadata, context, etc.) are
copied into each.

This is useful for splitting expensive tasks such as importance sampling across
multiple jobs.

	Parameters:

	num_parts (int) – The number of parts to split the Result across.

	Return type:

	list of sub-Results.

	
train_unconditional_flow(parameters, nde_settings: dict, train_dir: str | None = None, threshold_std: float | None = inf)

	Train an unconditional flow to represent the distribution of self.samples.

	Parameters:

	
	parameters (list) – List of parameters over which to train the flow. Can be a subset of the
existing parameters.

	nde_settings (dict) – Configuration settings for the neural density estimator.

	train_dir (Optional[str]) – Where to save the output of network training, e.g., logs, checkpoints. If
not provide, a temporary directory is used.

	threshold_std (Optional[float]) – Drop samples more than threshold_std standard deviations away from the mean
(in any parameter) before training the flow. This is meant to remove outlier
samples.

	Return type:

	PosteriorModel

	
update_prior(prior_update)

	Update the prior based on a new dict of priors. Use the existing prior for
parameters not included in the new dict.

If class samples have not been importance sampled, then save new sample weights
based on the new prior. If class samples have been importance sampled,
then update the weights.

	Parameters:

	prior_update (dict) – Priors to update. This should be of the form {key : prior_str}, where str
is a string that can instantiate a prior via PriorDict(prior_update). The
prior_update is provided in this form so that it can be properly saved with
the Result and later instantiated.

Following a sampler run, a Result can be obtained using Sampler.to_result(). Since Result inherits from DingoDataset it also possesses to_file() and to_dictionary() methods for saving samples and associated metadata (including context data, namely event data and ASDs).

Density recovery

When sampling with GNPE, there is no direct access to the probability density \(q(\theta|d)\). This is because of the Gibbs iterations: one only has access to the probability density of the entire chain, not just the final samples. The probability density is, however, needed for importance sampling, since this is the proposal distribution.

The Result class contains methods to enable recovery of the probability density for a collection of samples. The approach is as follows:

	Start from the samples \(\{(\theta_i, \hat\theta_i)\}_{i=1}^N\) from the final Gibbs iteration, including parameters \(\theta\) and proxy parameters \(\hat\theta\). By default these are included in the samples attribute generated by the Sampler.

	Train an unconditional density estimator \(q(\hat\theta)\) to model the proxy parameters. This is done by (1) using parameter_subset() to produce a new Result containing just the proxies, and (2) using train_unconditional_flow() on this subset.

	Generate new samples \((\theta, \hat\theta) \sim q(\theta, \hat\theta | d) = q(\theta | d, \hat\theta) q(\hat\theta)\). This can be accomplished using GNPESampler.sample() with num_iterations = 1 and setting the initial sampler to be the unconditional flow trained in the previous step. Since this does not involve multiple iterations, the density is obtained as well, so importance sampling can be performed.

Note

Density recovery can also be achieved using an unconditional density estimator for \(\theta\) (trained on samples \(\{\theta_i\}_{i=1}^N\) from GNPE). Since \(\theta\) typically comprises 14 parameters (versus 2 or 3 for \(\hat\theta\)) it is usually more straightforward to learn the proxies.

Synthetic phase

It is often challenging for Dingo to learn to model the phase parameter \(\phi_c\). For this reason, we usually marginalize over it in training by excluding it from the list of inference_parameters. The phase is, however, required for importance sampling unless using also a phase-marginalized likelihood (which is approximate except under special circumstances).

The Dingo gw.Result class includes a method sample_synthetic_phase() which produces a \(\phi_c\) sample from a \(\phi_c\)-marginalized sample. It does so by evaluating the likelihood on a \(\phi_c\)-grid and then sampling from the associated 1D distribution. The log_prob value for the sample is also corrected to reflect the sampled \(\phi_c\). Speed is ensured by caching waveform modes and evaluating the polarizations for different \(\phi_c\). For further details, see the Supplemental Material of [5].

This method should be run after recovering the density, since in particular it applies a correction to the density.

Configuration

The method sample_synthetic_phase() takes a kwargs argument. An example configuration is

approximation_22_mode: false
n_grid: 5001
uniform_weight: 0.01
num_processes: 100

	approximation_22_mode
	Whether to make the approximation that only the \((l, m) = (2, 2)\) mode is present, i.e., waveforms transform as \(\exp{2\pi i \phi_c}\). This simplifies computations since it does not require caching of waveform modes.

	n_grid
	Specifies the phase grid on which the likelihoods are evaluated.

	uniform_weight
	Base probability level to add to ensure mass coverage.

	num_processes
	For parallelization of synthetic phase sampling. This is usually the most expensive part of importance sampling, so it is advantageous to perform calculations in parallel.

Importance sampling

Once samples are in the right form—including all relevant parameters and the log probability—importance sampling is carried out using the importance_sample() method. It allows to specify options for using a marginalized likelihood. (Time and phase marginalization are separately supported; see the documentation of dingo.gw.likelihood.StationaryGaussianGWLikelihood.)

As with the synthetic phase, importance sampling allows for parallelization.

Plotting

The plotting methods included here are intended for quick plots for evaluating results. They include

	corner plots comparing importance sampled and proposal results;

	weights plots to evaluate performance of importance sampling; and

	log probability plots comparing target and proposal log probability.

 dingo_pipe

dingo_pipe

Dingo includes a command-line tool dingo_pipe for automating inference tasks. This is based very closely on the bilby_pipe [https://lscsoft.docs.ligo.org/bilby_pipe/master/index.html] package, with suitable modifications. The basic usage is to pass a .ini file containing event information and run configuration settings, e.g.,

dingo_pipe GW150914.ini

dingo_pipe then executes various commands for preparing data, sampling from networks, importance sampling, and plotting. It can execute commands locally or on a cluster using a DAG. This documentation will only describe the relevant differences compared to bilby_pipe, and we refer the reader to the bilby_pipe documentation for additional information.

Example GW150914.ini file. This is also available in the examples/ directory.

##
Job submission arguments
##

local = True
accounting = dingo
request-cpus-importance-sampling = 16
n-parallel = 4
sampling-requirements = [TARGET.CUDAGlobalMemoryMb>40000]
extra-lines = [+WantsGPUNode = True]
simple-submission = false

##
Sampler arguments
##

model-init = /data/sgreen/dingo-experiments/XPHM/O1_init/model_stage_1.pt
model = /data/sgreen/dingo-experiments/XPHM/testing_inference/model.pt
device = 'cuda'
num-gnpe-iterations = 30
num-samples = 50000
batch-size = 50000
recover-log-prob = true
importance-sample = true
prior-dict = {
luminosity_distance = bilby.gw.prior.UniformComovingVolume(minimum=100, maximum=2000, name='luminosity_distance'),
}

##
Data generation arguments
##

trigger-time = GW150914
label = GW150914
outdir = outdir_GW150914
channel-dict = {H1:GWOSC, L1:GWOSC}
psd-length = 128
sampling-frequency = 2048.0
importance-sampling-updates = {'duration': 4.0}

##
Calibration marginalization arguments
##

calibration-model = CubicSpline
spline-calibration-envelope-dict = {H1: GWTC1_GW150914_H_CalEnv.txt, L1: GWTC1_GW150914_L_CalEnv.txt}
spline-calibration-nodes = 10
spline-calibration-curves = 1000

##
Plotting arguments
##

plot-corner = true
plot-weights = true
plot-log-probs = true

The main difference compared to a bilby_pipe .ini file is that one specifies trained Dingo models rather than data conditioning and prior settings. The reason for this is that such settings have already been incorporated into training of the model. It is therefore not possible to change them when sampling from the Dingo model. Understandably, this could cause inconvenience if one is interested in a different prior or data conditioning settings. As a solution, Dingo enables the changing of such settings during importance sampling, which applies the new settings for likelihood evaluations.

Important

For dingo_pipe it is necessary to specify a trained Dingo model instead of sampler
settings such as prior and data conditioning.

Data generation

The first step is to download and prepare gravitational-wave data. In the example, dingo_pipe (using bilby_pipe routines) downloads the event and PSD data at the time of GW150914. It then prepares the data based on conditioning settings in the specified Dingo model. If other conflicting conditioning settings are provided (e.g., sampling_frequency = 2048.0), dingo_pipe stores these in the dictionary importance_sampling_updates (which can also be specified explicitly). These settings are ignored for now, and only applied later for calculating the likelihood in importance sampling.

The prepared event data and ASD are stored in a dingo.gw.data.event_dataset.EventDataset, which is then saved to disk in HDF5 format.

Note

Dingo models are typically trained using Welch PSDs. For this reason we do not recommend using a BayesWave PSD for initial sampling. Rather, a BayesWave PSD should be specified within the importance_sampling_updates dictionary, so that it will be used during importance sampling.

Sampling

The next step is sampling from the Dingo model. The model is loaded into a GWSampler or GWSamplerGNPE object. (If using GNPE it is necessary to specify a model-init.) The Sampler context is then set from the EventDataset prepared in the previous step. num-samples samples are then generated in batches of size batch-size. The samples (and context) are stored in a Result object and saved in HDF5 format.

If using GNPE, one can optionally specify num-gnpe-iterations (it defaults to 30). Importantly, obtaining the log probability when using GNPE requires an extra step of training an unconditional flow. This is done using the recover-log-prob flag, which defaults to True. The default density recovery settings can be overwritten by providing a density-recovery-settings dictionary in the .ini file.

Since sampling uses GPU hardware, there is an additional key sampling-requirements for HTCondor requirements during the sampling stage. This is intended for specifying GPU requirements such as memory or CUDA version.

Importance sampling

For importance sampling, the Result saved in the previous step is loaded. Since this contains the strain data and ASDs, as well as all settings used for training the network, the likelihood and prior can be evaluated for each sample point. If it is necessary to change data conditioning or PSD for importance sampling (i.e., if the importance-sampling-updates dictionary is non-empty), then a second data generation step is first carried using the new settings, and used as importance sampling context. The importance sampled result is finally saved as HDF5, including the estimated Bayesian evidence.

If a prior-dict is specified in the .ini file, then this will be used for the importance sampling prior. One example where this is useful is for the luminosity distance prior. Indeed, Dingo tends to train better using a uniform prior over luminosity distance, but physically one would prefer a uniform in volume prior. By specifying a prior-dict this change can be made in importance sampling.

Caution

If extending the prior support during importance sampling, be sure that the posterior does not rail up against the prior boundary being extended.

By default, dingo_pipe assumes that it is necessary to sample the phase synthetically, so it will do so before importance sampling. This can be turned off by passing an empty dictionary to importance-sampling-settings. Note that importance sampling itself can be switched off by setting the importance-sample flag to False (it defaults to True).

Importance sampling (including synthetic phase sampling) is an expensive step, so dingo_pipe allows for parallelization: this step is split over n-parallel jobs, each of which uses request-cpus-importance-sampling processes. In the backend, this makes use of the Result split() and merge() methods.

Calibration marginalization

Settings related to calibration are used to marginalize over calibration uncertainty during importance sampling.

	calibration-model
	None or “CubicSpline”. If “CubicSpline”, perform calibration marginalization using a cubic spline calibration model. If None do not perform calibration marginalization. (Default: None)

	spline-calibration-envelope-dict
	Dictionary pointing to the spline calibration envelope files. This is required if calibration-model is “CubicSpline”.

	spline-calibration-nodes
	Number of calibration nodes. (Default: 10)

	spline-calibration-curves
	Number of calibration curves to use for marginalization. (Default: 1000)

Plotting

The standard Result plots are turned on using the plot-corner, plot-weights, and plot-log-probs flags.

Additional options

	extra-lines
	Additional lines for all submission scripts. This could be useful for particular cluster configurations.

	simple-submission
	Strip the keys accounting_tag, getenv, priority, and universe from submission scripts. Again useful for particular cluster configurations.

 dingo

dingo

	dingo package
	Subpackages
	dingo.asimov package
	Submodules

	dingo.asimov.asimov module

	Module contents

	dingo.core package
	Subpackages

	Submodules

	dingo.core.dataset module

	dingo.core.likelihood module

	dingo.core.multiprocessing module

	dingo.core.result module

	dingo.core.samplers module

	dingo.core.transforms module

	Module contents

	dingo.gw package
	Subpackages

	Submodules

	dingo.gw.SVD module

	dingo.gw.domains module

	dingo.gw.download_strain_data module

	dingo.gw.gwutils module

	dingo.gw.injection module

	dingo.gw.likelihood module

	dingo.gw.ls_cli module

	dingo.gw.prior module

	dingo.gw.result module

	dingo.gw.temporary_debug_utils module

	Module contents

	dingo.pipe package
	Subpackages

	Submodules

	dingo.pipe.dag_creator module

	dingo.pipe.data_generation module

	dingo.pipe.default_settings module

	dingo.pipe.dingo_result module

	dingo.pipe.importance_sampling module

	dingo.pipe.main module

	dingo.pipe.parser module

	dingo.pipe.plot module

	dingo.pipe.sampling module

	dingo.pipe.utils module

	Module contents

	Module contents

 dingo package

dingo package

Subpackages

	dingo.asimov package
	Submodules

	dingo.asimov.asimov module

	Module contents

	dingo.core package
	Subpackages
	dingo.core.density package
	Submodules

	dingo.core.density.interpolation module

	dingo.core.density.nde_settings module

	dingo.core.density.unconditional_density_estimation module

	Module contents

	dingo.core.models package
	Submodules

	dingo.core.models.posterior_model module

	Module contents

	dingo.core.nn package
	Submodules

	dingo.core.nn.enets module

	dingo.core.nn.nsf module

	Module contents

	dingo.core.utils package
	Submodules

	dingo.core.utils.condor_utils module

	dingo.core.utils.gnpeutils module

	dingo.core.utils.logging_utils module

	dingo.core.utils.misc module

	dingo.core.utils.plotting module

	dingo.core.utils.pt_to_hdf5 module

	dingo.core.utils.torchutils module

	dingo.core.utils.trainutils module

	Module contents

	Submodules

	dingo.core.dataset module
	DingoDataset
	DingoDataset.dataset_type

	DingoDataset.from_dictionary()

	DingoDataset.from_file()

	DingoDataset.to_dictionary()

	DingoDataset.to_file()

	recursive_hdf5_load()

	recursive_hdf5_save()

	dingo.core.likelihood module
	Likelihood
	Likelihood.log_likelihood()

	Likelihood.log_likelihood_multi()

	dingo.core.multiprocessing module
	apply_func_with_multiprocessing()

	dingo.core.result module
	Result
	Result.base_metadata

	Result.constraint_parameter_keys

	Result.dataset_type

	Result.effective_sample_size

	Result.fixed_parameter_keys

	Result.importance_sample()

	Result.injection_parameters

	Result.log_bayes_factor

	Result.log_evidence_std

	Result.merge()

	Result.metadata

	Result.n_eff

	Result.num_samples

	Result.parameter_subset()

	Result.plot_corner()

	Result.plot_log_probs()

	Result.plot_weights()

	Result.print_summary()

	Result.reset_event()

	Result.sample_efficiency

	Result.sampling_importance_resampling()

	Result.search_parameter_keys

	Result.split()

	Result.train_unconditional_flow()

	check_equal_dict_of_arrays()

	freeze()

	dingo.core.samplers module
	GNPESampler
	GNPESampler.gnpe_proxy_parameters

	GNPESampler.init_sampler

	GNPESampler.num_iterations

	Sampler
	Sampler.run_sampler()

	Sampler.log_prob()

	Sampler.to_result()

	Sampler.to_hdf5()

	Sampler.model

	Sampler.inference_parameters

	Sampler.samples

	Sampler.context

	Sampler.metadata

	Sampler.event_metadata

	Sampler.unconditional_model

	Sampler.context

	Sampler.event_metadata

	Sampler.log_prob()

	Sampler.run_sampler()

	Sampler.to_hdf5()

	Sampler.to_result()

	Sampler.write_pesummary()

	dingo.core.transforms module
	GetItem

	RenameKey

	Module contents

	dingo.gw package
	Subpackages
	dingo.gw.conversion package
	Submodules

	dingo.gw.conversion.spin_conversion module

	Module contents

	dingo.gw.data package
	Submodules

	dingo.gw.data.data_download module

	dingo.gw.data.data_preparation module

	dingo.gw.data.event_dataset module

	Module contents

	dingo.gw.dataset package
	Submodules

	dingo.gw.dataset.generate_dataset module

	dingo.gw.dataset.generate_dataset_dag module

	dingo.gw.dataset.utils module

	dingo.gw.dataset.waveform_dataset module

	Module contents

	dingo.gw.importance_sampling package
	Submodules

	dingo.gw.importance_sampling.diagnostics module

	dingo.gw.importance_sampling.importance_weights module

	Module contents

	dingo.gw.inference package
	Submodules

	dingo.gw.inference.gw_samplers module

	dingo.gw.inference.inference_pipeline module

	dingo.gw.inference.visualization module

	Module contents

	dingo.gw.noise package
	Subpackages

	Submodules

	dingo.gw.noise.asd_dataset module

	dingo.gw.noise.asd_estimation module

	dingo.gw.noise.generate_dataset module

	dingo.gw.noise.generate_dataset_dag module

	dingo.gw.noise.utils module

	Module contents

	dingo.gw.training package
	Submodules

	dingo.gw.training.train_builders module

	dingo.gw.training.train_pipeline module

	dingo.gw.training.train_pipeline_condor module

	dingo.gw.training.utils module

	Module contents

	dingo.gw.transforms package
	Submodules

	dingo.gw.transforms.detector_transforms module

	dingo.gw.transforms.general_transforms module

	dingo.gw.transforms.gnpe_transforms module

	dingo.gw.transforms.inference_transforms module

	dingo.gw.transforms.noise_transforms module

	dingo.gw.transforms.parameter_transforms module

	Module contents

	dingo.gw.waveform_generator package
	Submodules

	dingo.gw.waveform_generator.frame_utils module

	dingo.gw.waveform_generator.waveform_generator module

	dingo.gw.waveform_generator.wfg_utils module

	Module contents

	Submodules

	dingo.gw.SVD module
	ApplySVD

	SVDBasis
	SVDBasis.compress()

	SVDBasis.compute_test_mismatches()

	SVDBasis.dataset_type

	SVDBasis.decompress()

	SVDBasis.from_dictionary()

	SVDBasis.from_file()

	SVDBasis.generate_basis()

	SVDBasis.print_validation_summary()

	dingo.gw.domains module
	Domain
	Domain.domain_dict

	Domain.duration

	Domain.f_max

	Domain.max_idx

	Domain.min_idx

	Domain.noise_std

	Domain.sampling_rate

	Domain.time_translate_data()

	Domain.update()

	FrequencyDomain
	FrequencyDomain.add_phase()

	FrequencyDomain.delta_f

	FrequencyDomain.domain_dict

	FrequencyDomain.duration

	FrequencyDomain.f_max

	FrequencyDomain.f_min

	FrequencyDomain.frequency_mask

	FrequencyDomain.frequency_mask_length

	FrequencyDomain.get_sample_frequencies_astype()

	FrequencyDomain.max_idx

	FrequencyDomain.min_idx

	FrequencyDomain.noise_std

	FrequencyDomain.sample_frequencies

	FrequencyDomain.sample_frequencies_torch

	FrequencyDomain.sample_frequencies_torch_cuda

	FrequencyDomain.sampling_rate

	FrequencyDomain.set_new_range()

	FrequencyDomain.time_translate_data()

	FrequencyDomain.update()

	FrequencyDomain.update_data()

	FrequencyDomain.window_factor

	PCADomain
	PCADomain.noise_std

	TimeDomain
	TimeDomain.delta_t

	TimeDomain.domain_dict

	TimeDomain.duration

	TimeDomain.f_max

	TimeDomain.max_idx

	TimeDomain.min_idx

	TimeDomain.noise_std

	TimeDomain.sampling_rate

	TimeDomain.time_translate_data()

	build_domain()

	build_domain_from_model_metadata()

	dingo.gw.download_strain_data module
	download_event_data_in_FD()

	download_strain_data_in_FD()

	estimate_single_psd()

	dingo.gw.gwutils module
	get_extrinsic_prior_dict()

	get_mismatch()

	get_standardization_dict()

	get_window()

	get_window_factor()

	dingo.gw.injection module
	GWSignal
	GWSignal.asd

	GWSignal.calibration_marginalization_kwargs

	GWSignal.signal()

	GWSignal.signal_m()

	GWSignal.whiten

	Injection
	Injection.from_posterior_model_metadata()

	Injection.injection()

	Injection.random_injection()

	dingo.gw.likelihood module
	StationaryGaussianGWLikelihood
	StationaryGaussianGWLikelihood.d_inner_h_complex()

	StationaryGaussianGWLikelihood.d_inner_h_complex_multi()

	StationaryGaussianGWLikelihood.initialize_time_marginalization()

	StationaryGaussianGWLikelihood.log_likelihood()

	StationaryGaussianGWLikelihood.log_likelihood_phase_grid()

	build_stationary_gaussian_likelihood()

	get_wfg()

	inner_product()

	inner_product_complex()

	main()

	dingo.gw.ls_cli module
	determine_dataset_type()

	ls()

	dingo.gw.prior module
	BBHExtrinsicPriorDict
	BBHExtrinsicPriorDict.default_conversion_function()

	BBHExtrinsicPriorDict.mean_std()

	build_prior_with_defaults()

	split_off_extrinsic_parameters()

	dingo.gw.result module
	Result
	Result.approximant

	Result.calibration_marginalization_kwargs

	Result.dataset_type

	Result.f_ref

	Result.get_samples_bilby_phase()

	Result.interferometers

	Result.pesummary_prior

	Result.pesummary_samples

	Result.phase_marginalization_kwargs

	Result.sample_synthetic_phase()

	Result.synthetic_phase_kwargs

	Result.t_ref

	Result.time_marginalization_kwargs

	Result.update_prior()

	dingo.gw.temporary_debug_utils module
	save_training_injection()

	Module contents

	dingo.pipe package
	Subpackages
	dingo.pipe.nodes package
	Submodules

	dingo.pipe.nodes.generation_node module

	dingo.pipe.nodes.importance_sampling_node module

	dingo.pipe.nodes.merge_node module

	dingo.pipe.nodes.pe_summary_node module

	dingo.pipe.nodes.plot_node module

	dingo.pipe.nodes.sampling_node module

	Module contents

	Submodules

	dingo.pipe.dag_creator module
	generate_dag()

	get_parallel_list()

	get_trigger_time_list()

	dingo.pipe.data_generation module
	DataGenerationInput
	DataGenerationInput.event_data_file

	DataGenerationInput.importance_sampling_updates

	DataGenerationInput.save_hdf5()

	create_generation_parser()

	main()

	dingo.pipe.default_settings module

	dingo.pipe.dingo_result module
	main()

	dingo.pipe.importance_sampling module
	ImportanceSamplingInput
	ImportanceSamplingInput.calibration_marginalization_kwargs

	ImportanceSamplingInput.importance_sampling_settings

	ImportanceSamplingInput.priors

	ImportanceSamplingInput.run_sampler()

	create_sampling_parser()

	main()

	dingo.pipe.main module
	MainInput
	MainInput.priors

	MainInput.request_cpus_importance_sampling

	fill_in_arguments_from_model()

	main()

	write_complete_config_file()

	dingo.pipe.parser module
	StoreBoolean

	create_parser()

	dingo.pipe.plot module
	create_parser()

	main()

	dingo.pipe.sampling module
	SamplingInput
	SamplingInput.density_recovery_settings

	SamplingInput.run_sampler()

	create_sampling_parser()

	main()

	dingo.pipe.utils module

	Module contents

Module contents

 dingo.asimov package

dingo.asimov package

Submodules

dingo.asimov.asimov module

Module contents

 dingo.core package

dingo.core package

Subpackages

	dingo.core.density package
	Submodules

	dingo.core.density.interpolation module
	interpolated_log_prob()

	interpolated_log_prob_multi()

	interpolated_sample_and_log_prob()

	interpolated_sample_and_log_prob_multi()

	dingo.core.density.nde_settings module
	get_default_nde_settings_3d()

	dingo.core.density.unconditional_density_estimation module
	SampleDataset

	parse_args()

	train_unconditional_density_estimator()

	Module contents

	dingo.core.models package
	Submodules

	dingo.core.models.posterior_model module
	PosteriorModel
	PosteriorModel.initialize_model()

	PosteriorModel.initialize_optimizer_and_scheduler()

	PosteriorModel.load_model()

	PosteriorModel.model_to_device()

	PosteriorModel.sample()

	PosteriorModel.save_model()

	PosteriorModel.train()

	get_model_callable()

	test_epoch()

	train_epoch()

	Module contents

	dingo.core.nn package
	Submodules

	dingo.core.nn.enets module
	DenseResidualNet
	DenseResidualNet.forward()

	LinearProjectionRB
	LinearProjectionRB.forward()

	LinearProjectionRB.init_layers()

	LinearProjectionRB.input_dim

	LinearProjectionRB.output_dim

	LinearProjectionRB.test_dimensions()

	ModuleMerger
	ModuleMerger.forward()

	create_enet_with_projection_layer_and_dense_resnet()

	dingo.core.nn.nsf module
	FlowWrapper
	FlowWrapper.forward()

	FlowWrapper.log_prob()

	FlowWrapper.sample()

	FlowWrapper.sample_and_log_prob()

	autocomplete_model_kwargs_nsf()

	create_base_transform()

	create_linear_transform()

	create_nsf_model()

	create_nsf_with_rb_projection_embedding_net()

	create_nsf_wrapped()

	create_transform()

	Module contents

	dingo.core.utils package
	Submodules

	dingo.core.utils.condor_utils module
	copy_logfiles()

	copyfile()

	create_submission_file()

	create_submission_file_and_submit_job()

	resubmit_condor_job()

	dingo.core.utils.gnpeutils module
	IterationTracker
	IterationTracker.pvalue_min

	IterationTracker.update()

	dingo.core.utils.logging_utils module
	check_directory_exists_and_if_not_mkdir()

	setup_logger()

	dingo.core.utils.misc module
	get_version()

	recursive_check_dicts_are_equal()

	dingo.core.utils.plotting module
	plot_corner_multi()

	dingo.core.utils.pt_to_hdf5 module
	main()

	parse_args()

	dingo.core.utils.torchutils module
	build_train_and_test_loaders()

	fix_random_seeds()

	forward_pass_with_unpacked_tuple()

	get_activation_function_from_string()

	get_lr()

	get_number_of_model_parameters()

	get_optimizer_from_kwargs()

	get_scheduler_from_kwargs()

	perform_scheduler_step()

	set_requires_grad_flag()

	split_dataset_into_train_and_test()

	torch_detach_to_cpu()

	dingo.core.utils.trainutils module
	AvgTracker
	AvgTracker.get_avg()

	AvgTracker.update()

	LossInfo
	LossInfo.get_avg()

	LossInfo.print_info()

	LossInfo.update()

	LossInfo.update_timer()

	RuntimeLimits
	RuntimeLimits.limits_exceeded()

	RuntimeLimits.local_limits_exceeded()

	copyfile()

	save_model()

	write_history()

	Module contents

Submodules

dingo.core.dataset module

	
class dingo.core.dataset.DingoDataset(file_name=None, dictionary=None, data_keys=None)

	Bases: object

This is a generic dataset class with save / load methods.

A common use case is to inherit multiply from DingoDataset and
torch.utils.data.Dataset, in which case the subclass picks up these I/O methods,
and DingoDataset is acting as a Mixin class.

Alternatively, if the torch Dataset is not needed, then DingoDataset can be
subclassed directly.

For constructing, provide either file_name, or dictionary containing data and
settings entries, or neither.

	Parameters:

	
	file_name (str) – HDF5 file containing a dataset

	dictionary (dict) – Contains settings and data entries. The data keys should be the same as
save_keys

	data_keys (list) – Variables that should be saved / loaded. This allows for class to store
additional variables beyond those that are saved. Typically, this list
would be provided by any subclass.

	
dataset_type = 'dingo_dataset'

	

	
from_dictionary(dictionary: dict)

	

	
from_file(file_name)

	

	
to_dictionary()

	

	
to_file(file_name, mode='w')

	

	
dingo.core.dataset.recursive_hdf5_load(group, keys=None)

	

	
dingo.core.dataset.recursive_hdf5_save(group, d)

	

dingo.core.likelihood module

	
class dingo.core.likelihood.Likelihood

	Bases: object

	
log_likelihood(theta)

	

	
log_likelihood_multi(theta: DataFrame, num_processes: int = 1) → ndarray

	Calculate the log likelihood at multiple points in parameter space. Works with
multiprocessing.

This wraps the log_likelihood() method.

	Parameters:

	
	theta (pd.DataFrame) – Parameters values at which to evaluate likelihood.

	num_processes (int) – Number of processes to use.

	Return type:

	np.array of log likelihoods

dingo.core.multiprocessing module

	
dingo.core.multiprocessing.apply_func_with_multiprocessing(func: callable, theta: DataFrame, num_processes: int = 1) → ndarray

	Call func(theta.iloc[idx].to_dict()) with multiprocessing.

	Parameters:

	
	func (callable) –

	theta (pd.DataFrame) – Parameters with multiple rows, evaluate func for each row.

	num_processes (int) – Number of parallel processes to use.

	Returns:

	result – Output array, where result[idx] = func(theta.iloc[idx].to_dict())

	Return type:

	np.ndarray

dingo.core.result module

	
class dingo.core.result.Result(file_name=None, dictionary=None)

	Bases: DingoDataset

A dataset class to hold a collection of samples, implementing I/O, importance
sampling, and unconditional flow training.

	Attributes:
	
	samplespd.Dataframe
	Contains parameter samples, as well as (possibly) log_prob, log_likelihood,
weights, log_prior, delta_log_prob_target.

	domainDomain
	Should be implemented in a subclass.

	priorPriorDict
	Should be implemented in a subclass.

	likelihoodLikelihood
	Should be implemented in a subclass.

	contextdict
	Context data from which the samples were produced (e.g., strain data, ASDs).

metadata : dict
event_metadata : dict
log_evidence : float
log_evidence_std : float (property)
effective_sample_size, n_eff : float (property)
sample_efficiency : float (property)

For constructing, provide either file_name, or dictionary containing data and
settings entries, or neither.

	Parameters:

	
	file_name (str) – HDF5 file containing a dataset

	dictionary (dict) – Contains settings and data entries. The data keys should be the same as
save_keys

	data_keys (list) – Variables that should be saved / loaded. This allows for class to store
additional variables beyond those that are saved. Typically, this list
would be provided by any subclass.

	
property base_metadata

	

	
property constraint_parameter_keys

	

	
dataset_type = 'core_result'

	

	
property effective_sample_size

	

	
property fixed_parameter_keys

	

	
importance_sample(num_processes: int = 1, **likelihood_kwargs)

	Calculate importance weights for samples.

Importance sampling starts with samples have been generated from a proposal
distribution q(theta), in this case a neural network model. Certain networks
(i.e., non-GNPE) also provide the log probability of each sample,
which is required for importance sampling.

Given the proposal, we re-weight samples according to the (un-normalized)
target distribution, which we take to be the likelihood L(theta) times the
prior pi(theta). This gives sample weights

w(theta) ~ pi(theta) L(theta) / q(theta),

where the overall normalization does not matter (and we take to have mean 1).
Since q(theta) enters this expression, importance sampling is only possible
when we know the log probability of each sample.

As byproducts, this method also estimates the evidence and effective sample
size of the importance sampled points.

This method modifies the samples pd.DataFrame in-place, adding new columns for
log_likelihood, log_prior, and weights. It also stores the log_evidence as an
attribute.

	Parameters:

	
	num_processes (int) – Number of parallel processes to use when calculating likelihoods. (This is
the most expensive task.)

	likelihood_kwargs (dict) – kwargs that are forwarded to the likelihood constructor. E.g., options for
marginalization.

	
property injection_parameters

	

	
property log_bayes_factor

	

	
property log_evidence_std

	

	
classmethod merge(parts)

	Merge several Result instances into one. Check that they are compatible,
in the sense of having the same metadata. Finally, calculate a new log evidence
for the combined result.

This is useful when recombining separate importance sampling jobs.

	Parameters:

	parts (list[Result]) – List of sub-Results to be combined.

	Return type:

	Combined Result.

	
property metadata

	

	
property n_eff

	

	
property num_samples

	

	
parameter_subset(parameters)

	Return a new object of the same type, with only a subset of parameters. Drops
all other columns in samples DataFrame as well (e.g., log_prob, weights).

	Parameters:

	parameters (list) – List of parameters to keep.

	Return type:

	Result

	
plot_corner(parameters=None, filename='corner.pdf')

	Generate a corner plot of the samples.

	Parameters:

	
	parameters (list[str]) – List of parameters to include. If None, include all parameters.
(Default: None)

	filename (str) – Where to save samples.

	
plot_log_probs(filename='log_probs.png')

	Make a scatter plot of the target versus proposal log probabilities. For the
target, subtract off the log evidence.

	
plot_weights(filename='weights.png')

	Make a scatter plot of samples weights vs log proposal.

	
print_summary()

	Display the number of samples, and (if importance sampling is complete) the log
evidence and number of effective samples.

	
reset_event(event_dataset)

	Set the Result context and event_metadata based on an EventDataset.

If these attributes already exist, perform a comparison to check for changes.
Update relevant objects appropriately. Note that setting context and
event_metadata attributes directly would not perform these additional checks and
updates.

	Parameters:

	event_dataset (EventDataset) – New event to be used for importance sampling.

	
property sample_efficiency

	

	
sampling_importance_resampling(num_samples=None, random_state=None)

	Generate unweighted posterior samples from weighted ones. New
samples are sampled with probability proportional to the sample weight.
Resampling is done with replacement, until the desired number of
unweighted samples is obtained.

	Parameters:

	
	num_samples (int) – Number of samples to resample.

	random_state (int or None) – Sampling seed.

	Returns:

	Unweighted samples

	Return type:

	pd.Dataframe

	
property search_parameter_keys

	

	
split(num_parts)

	Split the Result into a set of smaller results. The samples are evenly divided
among the sub-results. Additional information (metadata, context, etc.) are
copied into each.

This is useful for splitting expensive tasks such as importance sampling across
multiple jobs.

	Parameters:

	num_parts (int) – The number of parts to split the Result across.

	Return type:

	list of sub-Results.

	
train_unconditional_flow(parameters, nde_settings: dict, train_dir: str | None = None, threshold_std: float | None = inf)

	Train an unconditional flow to represent the distribution of self.samples.

	Parameters:

	
	parameters (list) – List of parameters over which to train the flow. Can be a subset of the
existing parameters.

	nde_settings (dict) – Configuration settings for the neural density estimator.

	train_dir (Optional[str]) – Where to save the output of network training, e.g., logs, checkpoints. If
not provide, a temporary directory is used.

	threshold_std (Optional[float]) – Drop samples more than threshold_std standard deviations away from the mean
(in any parameter) before training the flow. This is meant to remove outlier
samples.

	Return type:

	PosteriorModel

	
dingo.core.result.check_equal_dict_of_arrays(a, b)

	

	
dingo.core.result.freeze(d)

	

dingo.core.samplers module

	
class dingo.core.samplers.GNPESampler(model: PosteriorModel, init_sampler: Sampler, num_iterations: int = 1)

	Bases: Sampler

Base class for GNPE sampler. It wraps a PosteriorModel and a standard Sampler for
initialization. The former is used to generate initial samples for Gibbs sampling.

A GNPE network is conditioned on additional “proxy” context theta^, i.e.,

p(theta | theta^, d)

The theta^ depend on theta via a fixed kernel p(theta^ | theta). Combining these
known distributions, this class uses Gibbs sampling to draw samples from the joint
distribution,

p(theta, theta^ | d)

The advantage of this approach is that we are allowed to perform any transformation of
d that depends on theta^. In particular, we can use this freedom to simplify the
data, e.g., by aligning data to have merger times = 0 in each detector. The merger
times are unknown quantities that must be inferred jointly with all other
parameters, and GNPE provides a means to do this iteratively. See
https://arxiv.org/abs/2111.13139 for additional details.

Gibbs sampling breaks access to the probability density, so this must be recovered
through other means. One way is to train an unconditional flow to represent p(theta^
| d) for fixed d based on the samples produced through the GNPE Gibbs sampling.
Starting from these, a single Gibbs iteration gives theta from the GNPE network,
along with the probability density in the joint space. This is implemented in
GNPESampler provided the init_sampler provides proxies directly and num_iterations
= 1.

Attributes (beyond those of Sampler)

	init_samplerSampler
	Used for providing initial samples for Gibbs sampling.

	num_iterationsint
	Number of Gibbs iterations to perform.

iteration_tracker : IterationTracker not set up
remove_init_outliers : float not set up

	param model:

	

	type model:

	PosteriorModel

	param init_sampler:

	Used for generating initial samples

	type init_sampler:

	Sampler

	param num_iterations:

	Number of GNPE iterations to be performed by sampler.

	type num_iterations:

	int

	
property gnpe_proxy_parameters

	

	
property init_sampler

	

	
property num_iterations

	The number of GNPE iterations to perform when sampling.

	
class dingo.core.samplers.Sampler(model: PosteriorModel)

	Bases: object

Sampler class that wraps a PosteriorModel. Allows for conditional and unconditional
models.

Draws samples from the model based on (optional) context data.

This is intended for use either as a standalone sampler, or as a sampler producing
initial sample points for a GNPE sampler.

	
run_sampler()

	

	
log_prob()

	

	
to_result()

	

	
to_hdf5()

	

	
model

	
	Type:

	PosteriorModel

	
inference_parameters

	
	Type:

	list

	
samples

	Samples produced from the model by run_sampler().

	Type:

	DataFrame

	
context

	
	Type:

	dict

	
metadata

	
	Type:

	dict

	
event_metadata

	
	Type:

	dict

	
unconditional_model

	Whether the model is unconditional, in which case it is not provided context
information.

	Type:

	bool

	
transform_pre, transform_post

	Transforms to be applied to data and parameters during inference. These are
typically implemented in a subclass.

	Type:

	Transform

	Parameters:

	model (PosteriorModel) –

	
property context

	Data on which to condition the sampler. For injections, there should be a
‘parameters’ key with truth values.

	
property event_metadata

	Metadata for data analyzed. Can in principle influence any post-sampling
parameter transformations (e.g., sky position correction), as well as the
likelihood detector positions.

	
log_prob(samples: DataFrame) → ndarray

	Calculate the model log probability at specific sample points.

	Parameters:

	samples (pd.DataFrame) – Sample points at which to calculate the log probability.

	Return type:

	np.array of log probabilities.

	
run_sampler(num_samples: int, batch_size: int | None = None)

	Generates samples and stores them in self.samples. Conditions the model on
self.context if appropriate (i.e., if the model is not unconditional).

If possible, it also calculates the log_prob and saves it as a column in
self.samples. When using GNPE it is not possible to obtain the log_prob due to
the many Gibbs iterations. However, in the case of just one iteration, and when
starting from a sampler for the proxy, the GNPESampler does calculate the
log_prob.

Allows for batched sampling, e.g., if limited by GPU memory. Actual sampling
for each batch is performed by _run_sampler(), which will differ for Sampler
and GNPESampler.

	Parameters:

	
	num_samples (int) – Number of samples requested.

	batch_size (int, optional) – Batch size for sampler.

	
to_hdf5(label='result', outdir='.')

	

	
to_result() → Result

	Export samples, metadata, and context information to a Result instance,
which can be used for saving or, e.g., importance sampling, training an
unconditional flow, etc.

	Return type:

	Result

	
write_pesummary(filename)

	

dingo.core.transforms module

	
class dingo.core.transforms.GetItem(key)

	Bases: object

	
class dingo.core.transforms.RenameKey(old, new)

	Bases: object

Module contents

 dingo.core.density package

dingo.core.density package

Submodules

dingo.core.density.interpolation module

	
dingo.core.density.interpolation.interpolated_log_prob(sample_points, values, evaluation_point)

	Given a distribution discretized on a grid, return a sample and the log prob from an
interpolated distribution. Wraps the bilby.core.prior.Interped class.

	Parameters:

	
	sample_points (np.ndarray) – x values for samples

	values (np.ndarray) – y values for samples. The distribution does not have to be initially
normalized, although the final log_prob will be.

	evaluation_point (float) – x value at which to evaluate log_prob.

	Returns:

	float

	Return type:

	log_prob

	
dingo.core.density.interpolation.interpolated_log_prob_multi(sample_points, values, evaluation_points, num_processes: int = 1)

	Given a distribution discretized on a grid, the log prob at a specific point
using an interpolated distribution. Wraps the bilby.core.prior.Interped class.
Works with multiprocessing.

	Parameters:

	
	sample_points (np.ndarray, shape (N)) – x values for samples

	values (np.ndarray, shape (B, N)) – y values for samples. The distributions do not have to be initially
normalized, although the final log_probs will be. B = batch dimension.

	evaluation_points (np.ndarray, shape (B)) – x values at which to evaluate log_prob.

	num_processes (int) – Number of parallel processes to use.

	Returns:

	(np.ndarray, np.ndarray)

	Return type:

	sample and log_prob arrays, each of length B

	
dingo.core.density.interpolation.interpolated_sample_and_log_prob(sample_points, values)

	Given a distribution discretized on a grid, return a sample and the log prob from an
interpolated distribution. Wraps the bilby.core.prior.Interped class.

	Parameters:

	
	sample_points (np.ndarray) – x values for samples

	values (np.ndarray) – y values for samples. The distribution does not have to be initially
normalized, although the final log_prob will be.

	Returns:

	(float, float)

	Return type:

	sample and log_prob

	
dingo.core.density.interpolation.interpolated_sample_and_log_prob_multi(sample_points, values, num_processes: int = 1)

	Given a distribution discretized on a grid, return a sample and the log prob from an
interpolated distribution. Wraps the bilby.core.prior.Interped class. Works with
multiprocessing.

	Parameters:

	
	sample_points (np.ndarray, shape (N)) – x values for samples

	values (np.ndarray, shape (B, N)) – y values for samples. The distributions do not have to be initially
normalized, although the final log_probs will be. B = batch dimension.

	num_processes (int) – Number of parallel processes to use.

	Returns:

	(np.ndarray, np.ndarray)

	Return type:

	sample and log_prob arrays, each of length B

dingo.core.density.nde_settings module

Default settings for unconditional density estimation

	
dingo.core.density.nde_settings.get_default_nde_settings_3d(device='cpu', num_workers=0, inference_parameters=None)

	

dingo.core.density.unconditional_density_estimation module

	
class dingo.core.density.unconditional_density_estimation.SampleDataset(data)

	Bases: Dataset

Dataset class for unconditional density estimation.
This is required, since the training method of dingo.core.models.PosteriorModel
expects a tuple of (theta, *context) as output of the DataLoader, but here we have
no context, so len(context) = 0. This SampleDataset therefore returns a tuple
(theta,) instead of just theta.

	
dingo.core.density.unconditional_density_estimation.parse_args()

	

	
dingo.core.density.unconditional_density_estimation.train_unconditional_density_estimator(result, settings: dict, train_dir: str)

	Train unconditional density estimator for a given set of samples.

	Parameters:

	
	samples (pd.DataFrame) – DataFrame containing the samples to train the density estimator on.

	settings (dict) – Dictionary containing the settings for the density estimator.

	train_dir (str) – Path to the directory where the trained model should be saved.

	Returns:

	model – trained density estimator

	Return type:

	PosteriorModel

Module contents

This submodule contains tools for density estimation from samples.
This is required for instance to recover the posterior density from GNPE samples,
since the density is intractable with GNPE.

 dingo.core.models package

dingo.core.models package

Submodules

dingo.core.models.posterior_model module

TODO: Docstring

	
class dingo.core.models.posterior_model.PosteriorModel(model_filename: str | None = None, metadata: dict | None = None, initial_weights: dict | None = None, device: str = 'cuda', load_training_info: bool = True)

	Bases: object

TODO: Docstring

	
initialize_model:

	initialize the NDE (including embedding net) as posterior model

	
initialize_training:

	initialize for training, that includes storing the epoch, building
an optimizer and a learning rate scheduler

	
save_model:

	save the model, including all information required to rebuild it,
except for the builder function

	
load_model:

	load and build a model from a file

	
train_model:

	train the model

	
inference:

	perform inference

	Parameters:

	
	model_builder (Callable) – builder function for the model,
self.model = model_builder(**model_kwargs)

	model_kwargs (dict = None) – kwargs for for the model,
self.model = model_builder(**model_kwargs)

	model_filename (str = None) – path to filename of loaded model

	optimizer_kwargs (dict = None) – kwargs for optimizer

	scheduler_kwargs (dict = None) – kwargs for scheduler

	init_for_training (bool = False) – flag whether initialization for training (e.g., optimizer) required

	metadata (dict = None) – dict with metadata, used to save dataset_settings and train_settings

	
initialize_model()

	Initialize a model for the posterior by calling the
self.model_builder with self.model_kwargs.

	
initialize_optimizer_and_scheduler()

	Initializes the optimizer and scheduler with self.optimizer_kwargs
and self.scheduler_kwargs, respectively.

	
load_model(model_filename: str, load_training_info: bool = True, device: str = 'cuda')

	Load a posterior model from the disk.

	Parameters:

	
	model_filename (str) – path to saved model

	load_training_info (bool #TODO: load information for training) – specifies whether information required to proceed with training is
loaded, e.g. optimizer state dict

	
model_to_device(device)

	Put model to device, and set self.device accordingly.

	
sample(*x, batch_size=None, get_log_prob=False)

	Sample from posterior model, conditioned on context x. x is expected to have a
batch dimension, i.e., to obtain N samples with additional context requires
x = x_.expand(N, *x_.shape).

This method takes care of the batching, makes sure that self.model is in
evaluation mode and disables gradient computation.

	Parameters:

	
	*x – input context to the neural network; has potentially multiple elements for,
e.g., gnpe proxies

	batch_size (int = None) – batch size for sampling

	get_log_prob (bool = False) – if True, also return log probability along with the samples

	Returns:

	samples – samples from posterior model

	Return type:

	torch.Tensor

	
save_model(model_filename: str, save_training_info: bool = True)

	Save the posterior model to the disk.

	Parameters:

	
	model_filename (str) – filename for saving the model

	save_training_info (bool) – specifies whether information required to proceed with training is
saved, e.g. optimizer state dict

	
train(train_loader: DataLoader, test_loader: DataLoader, train_dir: str, runtime_limits: object | None = None, checkpoint_epochs: int | None = None, use_wandb=False, test_only=False)

	
	Parameters:

	
	train_loader –

	test_loader –

	train_dir –

	runtime_limits –

	checkpoint_epochs –

	use_wandb –

	test_only (bool = False) – if True, training is skipped

	
dingo.core.models.posterior_model.get_model_callable(model_type: str)

	

	
dingo.core.models.posterior_model.test_epoch(pm, dataloader)

	

	
dingo.core.models.posterior_model.train_epoch(pm, dataloader)

	

Module contents

 dingo.core.nn package

dingo.core.nn package

Submodules

dingo.core.nn.enets module

Implementation of embedding networks.

	
class dingo.core.nn.enets.DenseResidualNet(input_dim: int, output_dim: int, hidden_dims: ~typing.Tuple, activation: ~typing.Callable = <function elu>, dropout: float = 0.0, batch_norm: bool = True)

	Bases: Module

A nn.Module consisting of a sequence of dense residual blocks. This is
used to embed high dimensional input to a compressed output. Linear
resizing layers are used for resizing the input and output to match the
first and last hidden dimension, respectively.

Module specs

input dimension: (batch_size, input_dim)
output dimension: (batch_size, output_dim)

	param input_dim:

	dimension of the input to this module

	type input_dim:

	int

	param output_dim:

	output dimension of this module

	type output_dim:

	int

	param hidden_dims:

	tuple with dimensions of hidden layers of this module

	type hidden_dims:

	tuple

	param activation:

	activation function used in residual blocks

	type activation:

	callable

	param dropout:

	dropout probability for residual blocks used for reqularization

	type dropout:

	float

	param batch_norm:

	flag that specifies whether to use batch normalization

	type batch_norm:

	bool

	
forward(x)

	Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class dingo.core.nn.enets.LinearProjectionRB(input_dims: List[int], n_rb: int, V_rb_list: Tuple | None)

	Bases: Module

A compression layer that reduces the input dimensionality via projection
onto a reduced basis. The input data is of shape (batch_size, num_blocks,
num_channels, num_bins). Each of the num_blocks blocks (for GW use case:
block=detector) is treated independently.

A single block consists of 1D data with num_bins bins (e.g. GW use case:
num_bins=number of frequency bins). It has num_channels>=2 different
channels, channel 0 and 1 store the real and imaginary part of the
signal. Channels with index >=2 are used for auxiliary signals (such as
PSD for GW use case).

This layer compresses the complex signal in channels 0 and 1 to n_rb
reduced-basis (rb) components. This is achieved by initializing the
weights of this layer with the rb matrix V, such that the (2*n_rb)
dimensional output of each block is the concatenation of the real and
imaginary part of the reduced basis projection of the complex signal in
channel 0 and 1. The projection of the auxiliary channels with index >=2
onto these components is initialized with 0.

Module specs

input dimension: (batch_size, num_blocks, num_channels, num_bins)
output dimension: (batch_size, 2 * n_rb * num_blocks)

	param input_dims:

	dimensions of input batch, omitting batch dimension
input_dims = [num_blocks, num_channels, num_bins]

	type input_dims:

	list

	param n_rb:

	number of reduced basis elements used for projection
the output dimension of the layer is 2 * n_rb * num_blocks

	type n_rb:

	int

	param V_rb_list:

	tuple with V matrices of the reduced basis SVD projection,
convention for SVD matrix decomposition: U @ s @ V^h;
if None, layer is not initialized with reduced basis projection,
this is useful when loading a saved model

	type V_rb_list:

	tuple of np.arrays, or None

	
forward(x)

	Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
init_layers(V_rb_list)

	Loop through layers and initialize them individually with the
corresponding rb projection. V_rb_list is a list that contains the rb
matrix V for each block. Each matrix V in V_rb_list is represented
with a numpy array of shape (self.num_bins, num_el), where
num_el >= self.n_rb.

	
property input_dim

	

	
property output_dim

	

	
test_dimensions(V_rb_list)

	Test if input dimensions to this layer are consistent with each
other, and the reduced basis matrices V.

	
class dingo.core.nn.enets.ModuleMerger(module_list: Tuple)

	Bases: Module

This is a wrapper used to process multiple different kinds of context
information collected in x = (x_0, x_1, …). For each kind of context
information x_i, an individual embedding network is provided in
enets = (enet_0, enet_1, …). The embedded output of the forward method
is the concatenation of the individual embeddings enet_i(x_i).

In the GW use case, this wrapper can be used to embed the
high-dimensional signal input into a lower dimensional feature vector
with a large embedding network, while applying an identity embedding to
the time shifts.

Module specs

input dimension: (batch_size, …), (batch_size, …), …
output dimension: (batch_size, ?)

	param module_list:

	nn.Modules for embedding networks,
use torch.nn.Identity for identity mappings

	type module_list:

	tuple

	
forward(*x)

	Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
dingo.core.nn.enets.create_enet_with_projection_layer_and_dense_resnet(input_dims: List[int], V_rb_list: Tuple | None, output_dim: int, hidden_dims: Tuple, svd: dict, activation: str = 'elu', dropout: float = 0.0, batch_norm: bool = True, added_context: bool = False)

	Builder function for 2-stage embedding network for 1D data with multiple
blocks and channels. Module 1 is a linear layer initialized as the
projection of the complex signal onto reduced basis components via the
LinearProjectionRB, where the blocks are kept separate. See docstring
of LinearProjectionRB for details. Module 2 is a sequence of dense residual
layers, that is used to further reduce the dimensionality.

The projection requires the complex signal to be represented via the real
part in channel 0 and the imaginary part in channel 1. Auxiliary signals
may be contained in channels with indices => 2. In GW use case a block
corresponds to a detector and channel 2 is used for ASD information.

If added_context = True, the 2-stage embedding network described above is
merged with an identity mapping via ModuleMerger. Then, the expected input
is not x with x.shape = (batch_size, num_blocks, num_channels, num_bins),
but rather the tuple *(x, z), where z is additional context information. The
output of the full module is then the concatenation of enet(x) and z. In
GW use case, this is used to concatenate the applied time shifts z to the
embedded feature vector of the strain data enet(x).

Module specs

	For added_context == False:
	input dimension: (batch_size, num_blocks, num_channels, num_bins)
output dimension: (batch_size, output_dim)

	For added_context == True:
	
	input dimension: (batch_size, num_blocks, num_channels, num_bins),
	(batch_size, N)

output dimension: (batch_size, output_dim + N)

	param input_dims:

	list
dimensions of input batch, omitting batch dimension
input_dims = (num_blocks, num_channels, num_bins)

	param n_rb:

	int
number of reduced basis elements used for projection
the output dimension of the layer is 2 * n_rb * num_blocks

	param V_rb_list:

	tuple of np.arrays, or None
tuple with V matrices of the reduced basis SVD projection,
convention for SVD matrix decomposition: U @ s @ V^h;
if None, layer is not initialized with reduced basis projection,
this is useful when loading a saved model

	param output_dim:

	int
output dimension of the full module

	param hidden_dims:

	tuple
tuple with dimensions of hidden layers of module 2

	param activation:

	str
str that specifies activation function used in residual blocks

	param dropout:

	float
dropout probability for residual blocks used for reqularization

	param batch_norm:

	bool
flag that specifies whether to use batch normalization

	param added_context:

	bool
if set to True, additional context z is concatenated to the embedded
feature vector enet(x); note that in this case, the expected input is
a tuple with 2 elements, input = (x, z) rather than just the tensor x.

	return:

	nn.Module

dingo.core.nn.nsf module

Implementation of the neural spline flow (NSF). Most of this code is adapted
from the uci.py example from https://github.com/bayesiains/nsf.

	
class dingo.core.nn.nsf.FlowWrapper(flow: Flow, embedding_net: Module | None = None)

	Bases: Module

This class wraps the neural spline flow. It is required for multiple
reasons. (i) some embedding networks take tuples as input, which is not
supported by the nflows package. (ii) paralellization across multiple
GPUs requires a forward method, but the relevant flow method for training
is log_prob.

	Parameters:

	
	flow – flows.base.Flow

	embedding_net – nn.Module

	
forward(y, *x)

	Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
log_prob(y, *x)

	

	
sample(*x, num_samples=1)

	

	
sample_and_log_prob(*x, num_samples=1)

	

	
dingo.core.nn.nsf.autocomplete_model_kwargs_nsf(model_kwargs, data_sample)

	Autocomplete the model kwargs from train_settings and data_sample from
the dataloader:
(*) set input dimension of embedding net to shape of data_sample[1]
(*) set dimension of nsf parameter space to len(data_sample[0])
(*) set added_context flag of embedding net if required for gnpe proxies
(*) set context dim of nsf to output dim of embedding net + gnpe proxy dim

	Parameters:

	
	train_settings – dict
train settings as loaded from .yaml file

	data_sample – list
Sample from dataloader (e.g., wfd[0]) used for autocomplection.
Should be of format [parameters, GW data, gnpe_proxies], where the
last element is only there is gnpe proxies are required.

	Returns:

	model_kwargs: dict
updated, autocompleted model_kwargs

	
dingo.core.nn.nsf.create_base_transform(i: int, param_dim: int, context_dim: int | None = None, hidden_dim: int = 512, num_transform_blocks: int = 2, activation: str = 'relu', dropout_probability: float = 0.0, batch_norm: bool = False, num_bins: int = 8, tail_bound: float = 1.0, apply_unconditional_transform: bool = False, base_transform_type: str = 'rq-coupling')

	Build a base NSF transform of y, conditioned on x.

This uses the PiecewiseRationalQuadraticCoupling transform or
the MaskedPiecewiseRationalQuadraticAutoregressiveTransform, as described
in the Neural Spline Flow paper (https://arxiv.org/abs/1906.04032).

Code is adapted from the uci.py example from
https://github.com/bayesiains/nsf.

A coupling flow fixes half the components of y, and applies a transform
to the remaining components, conditioned on the fixed components. This is
a restricted form of an autoregressive transform, with a single split into
fixed/transformed components.

The transform here is a neural spline flow, where the flow is parametrized
by a residual neural network that depends on y_fixed and x. The residual
network consists of a sequence of two-layer fully-connected blocks.

	Parameters:

	
	i – int
index of transform in sequence

	param_dim – int
dimensionality of y

	context_dim – int = None
dimensionality of x

	hidden_dim – int = 512
number of hidden units per layer

	num_transform_blocks – int = 2
number of transform blocks comprising the transform

	activation – str = ‘relu’
activation function

	dropout_probability – float = 0.0
dropout probability for regularization

	batch_norm – bool = False
whether to use batch normalization

	num_bins – int = 8
number of bins for the spline

	tail_bound – float = 1.

	apply_unconditional_transform – bool = False
whether to apply an unconditional transform to fixed components

	base_transform_type – str = ‘rq-coupling’
type of base transform, one of {rq-coupling, rq-autoregressive}

	Returns:

	Transform
the NSF transform

	
dingo.core.nn.nsf.create_linear_transform(param_dim: int)

	Create the composite linear transform PLU.

	Parameters:

	param_dim – int
dimension of the parameter space

	Returns:

	nde.Transform
the linear transform PLU

	
dingo.core.nn.nsf.create_nsf_model(input_dim: int, context_dim: int, num_flow_steps: int, base_transform_kwargs: dict, embedding_net_builder: Callable | str | None = None, embedding_net_kwargs: dict | None = None)

	Build NSF model. This models the posterior distribution p(y|x).

	The model consists of
	
	a base distribution (StandardNormal, dim(y))

	a sequence of transforms, each conditioned on x

	Parameters:

	
	input_dim – int,
dimensionality of y

	context_dim – int,
dimensionality of the (embedded) context

	num_flow_steps – int,
number of sequential transforms

	base_transform_kwargs – dict,
hyperparameters for transform steps

	embedding_net_builder – Callable=None,
build function for embedding network TODO

	embedding_net_kwargs – dict=None,
hyperparameters for embedding network

	Returns:

	Flow
the NSF (posterior model)

	
dingo.core.nn.nsf.create_nsf_with_rb_projection_embedding_net(nsf_kwargs: dict, embedding_net_kwargs: dict, initial_weights: dict | None = None)

	Builds a neural spline flow with an embedding network that consists of a
reduced basis projection followed by a residual network. Optionally initializes the
embedding network weights.

	Parameters:

	
	nsf_kwargs (dict) – kwargs for neural spline flow

	embedding_net_kwargs (dict) – kwargs for emebedding network

	initial_weights (dict) – Dictionary containing the initial weights for the SVD projection. This should
have one key ‘V_rb_list’, with value a list of SVD V matrices (one for each
detector).

	Returns:

	Neural spline flow model

	Return type:

	nn.Module

	
dingo.core.nn.nsf.create_nsf_wrapped(**kwargs)

	Wraps the NSF model in a FlowWrapper. This is required for parallel
training, and wraps the log_prob method as a forward method.

	
dingo.core.nn.nsf.create_transform(num_flow_steps: int, param_dim: int, context_dim: int, base_transform_kwargs: dict)

	Build a sequence of NSF transforms, which maps parameters y into the
base distribution u (noise). Transforms are conditioned on context data x.

Note that the forward map is f^{-1}(y, x).

	Each step in the sequence consists of
	
	A linear transform of y, which in particular permutes components

	A NSF transform of y, conditioned on x.

There is one final linear transform at the end.

	Parameters:

	
	num_flow_steps – int,
number of transforms in sequence

	param_dim – int,
dimensionality of parameter space (y)

	context_dim – int,
dimensionality of context (x)

	base_transform_kwargs – int
hyperparameters for NSF step

	Returns:

	Transform
the NSF transform sequence

Module contents

 dingo.core.utils package

dingo.core.utils package

Submodules

dingo.core.utils.condor_utils module

	
dingo.core.utils.condor_utils.copy_logfiles(log_dir, epoch, name='info', suffixes=('.err', '.log', '.out'))

	

	
dingo.core.utils.condor_utils.copyfile(src, dst)

	

	
dingo.core.utils.condor_utils.create_submission_file(train_dir, filename='submission_file.sub')

	TODO: documentation
:param train_dir:
:param filename:
:return:

	
dingo.core.utils.condor_utils.create_submission_file_and_submit_job(train_dir, filename='submission_file.sub')

	TODO: documentation
:param train_dir:
:param filename:
:return:

	
dingo.core.utils.condor_utils.resubmit_condor_job(train_dir, train_settings, epoch)

	TODO: documentation
:param train_dir:
:param train_settings:
:param epoch:
:return:

dingo.core.utils.gnpeutils module

	
class dingo.core.utils.gnpeutils.IterationTracker(data=None, store_data=False)

	Bases: object

	
property pvalue_min

	

	
update(new_data)

	Append new_data to self.data.

	Parameters:

	new_data (dict) – dict with numpy arrays to append to data

dingo.core.utils.logging_utils module

	
dingo.core.utils.logging_utils.check_directory_exists_and_if_not_mkdir(directory, logger)

	Checks if the given directory exists and creates it if it does not exist

	Parameters:

	
	directory (str) – Name of the directory

	bilby-pipe (Borrowed from) –

	
dingo.core.utils.logging_utils.setup_logger(outdir=None, label=None, log_level='INFO')

	Setup logging output: call at the start of the script to use

	Parameters:

	
	outdir (str) – If supplied, write the logging output to outdir/label.log

	label (str) – If supplied, write the logging output to outdir/label.log

	log_level (str, optional) – [‘debug’, ‘info’, ‘warning’]
Either a string from the list above, or an integer as specified
in https://docs.python.org/2/library/logging.html#logging-levels

	bilby-pipe (Borrowed from) –

dingo.core.utils.misc module

	
dingo.core.utils.misc.get_version()

	

	
dingo.core.utils.misc.recursive_check_dicts_are_equal(dict_a, dict_b)

	

dingo.core.utils.plotting module

	
dingo.core.utils.plotting.plot_corner_multi(samples, weights=None, labels=None, filename='corner.pdf', **kwargs)

	Generate a corner plot for multiple posteriors.

	Parameters:

	
	samples (list[pd.DataFrame]) – List of sample sets. The DataFrame column names are used as parameter labels.

	weights (list[np.ndarray or None] or None) – List of weights sets. The length of each array should be the same as the length of
the corresponding samples.

	labels (list[str or None] or None) – Labels for the posteriors.

	filename (str) – Where to save samples.

	**kwargs – Forwarded to corner.corner.

dingo.core.utils.pt_to_hdf5 module

	
dingo.core.utils.pt_to_hdf5.main()

	

	
dingo.core.utils.pt_to_hdf5.parse_args()

	

dingo.core.utils.torchutils module

	
dingo.core.utils.torchutils.build_train_and_test_loaders(dataset: Dataset, train_fraction: float, batch_size: int, num_workers: int)

	Split the dataset into train and test sets, and build corresponding DataLoaders.
The random split uses a fixed seed for reproducibility.

	Parameters:

	
	dataset (torch.utils.data.Dataset) –

	train_fraction (float) – Fraction of dataset to use for training. The remainder is used for testing.
Should lie between 0 and 1.

	batch_size (int) –

	num_workers (int) –

	Return type:

	(train_loader, test_loader)

	
dingo.core.utils.torchutils.fix_random_seeds(_)

	Utility function to set random seeds when using multiple workers for DataLoader.

	
dingo.core.utils.torchutils.forward_pass_with_unpacked_tuple(model: Module, x: Tuple | Tensor)

	Performs forward pass of model with input x. If x is a tuple, it return
y = model(*x), else it returns y = model(x).
:param model: nn.Module

model for forward pass

	Parameters:

	x – Union[Tuple, torch.Tensor]
input for forward pass

	Returns:

	torch.Tensor
output of the forward pass, either model(*x) or model(x)

	
dingo.core.utils.torchutils.get_activation_function_from_string(activation_name: str)

	Returns an activation function, based on the name provided.

	Parameters:

	activation_name – str
name of the activation function, one of {‘elu’, ‘relu’, ‘leaky_rely’}

	Returns:

	function
corresponding activation function

	
dingo.core.utils.torchutils.get_lr(optimizer)

	Returns a list with the learning rates of the optimizer.

	
dingo.core.utils.torchutils.get_number_of_model_parameters(model: Module, requires_grad_flags: tuple = (True, False))

	Counts parameters of the module. The list requires_grad_flag can be used
to specify whether all parameters should be counted, or only those with
requires_grad = True or False.
:param model: nn.Module

model

	Parameters:

	requires_grad_flags – tuple
tuple of bools, for requested requires_grad flags

	Returns:

	number of parameters of the model with requested required_grad flags

	
dingo.core.utils.torchutils.get_optimizer_from_kwargs(model_parameters: Iterable, **optimizer_kwargs)

	Builds and returns an optimizer for model_parameters. The type of the
optimizer is determined by kwarg type, the remaining kwargs are passed to
the optimizer.

	Parameters:

	
	model_parameters (Iterable) – iterable of parameters to optimize or dicts defining parameter groups

	optimizer_kwargs – kwargs for optimizer; type needs to be one of [adagrad, adam, adamw,
lbfgs, RMSprop, sgd], the remaining kwargs are used for specific
optimizer kwargs, such as learning rate and momentum

	Return type:

	optimizer

	
dingo.core.utils.torchutils.get_scheduler_from_kwargs(optimizer: Optimizer, **scheduler_kwargs)

	Builds and returns an scheduler for optimizer. The type of the
scheduler is determined by kwarg type, the remaining kwargs are passed to
the scheduler.

	Parameters:

	
	optimizer (torch.optim.optimizer.Optimizer) – optimizer for which the scheduler is used

	scheduler_kwargs – kwargs for scheduler; type needs to be one of [step, cosine,
reduce_on_plateau], the remaining kwargs are used for
specific scheduler kwargs, such as learning rate and momentum

	Return type:

	scheduler

	
dingo.core.utils.torchutils.perform_scheduler_step(scheduler, loss=None)

	Wrapper for scheduler.step(). If scheduler is ReduceLROnPlateau,
then scheduler.step(loss) is called, if not, scheduler.step().

	Parameters:

	
	scheduler – scheduler for learning rate

	loss – validation loss

	
dingo.core.utils.torchutils.set_requires_grad_flag(model, name_startswith=None, name_contains=None, requires_grad=True)

	Set param.requires_grad of all model parameters with a name starting with
name_startswith, or name containing name_contains, to requires_grad.

	
dingo.core.utils.torchutils.split_dataset_into_train_and_test(dataset, train_fraction)

	Splits dataset into a trainset of size int(train_fraction * len(dataset)),
and a testset with the remainder. Uses fixed random seed for
reproducibility.

	Parameters:

	
	dataset (torch.utils.data.Datset) – dataset to be split

	train_fraction (float) – fraction of the dataset to be used for trainset

	Return type:

	trainset, testset

	
dingo.core.utils.torchutils.torch_detach_to_cpu(x)

	

dingo.core.utils.trainutils module

	
class dingo.core.utils.trainutils.AvgTracker

	Bases: object

	
get_avg()

	

	
update(x, n=1)

	

	
class dingo.core.utils.trainutils.LossInfo(epoch, len_dataset, batch_size, mode='Train', print_freq=1)

	Bases: object

	
get_avg()

	

	
print_info(batch_idx)

	

	
update(loss, n)

	

	
update_timer(timer_mode='Dataloader')

	

	
class dingo.core.utils.trainutils.RuntimeLimits(max_time_per_run: float | None = None, max_epochs_per_run: int | None = None, max_epochs_total: int | None = None, epoch_start: int | None = None)

	Bases: object

Keeps track of the runtime limits (time limit, epoch limit, max. number
of epochs for model).

	Parameters:

	
	max_time_per_run (float = None) – maximum time for run, in seconds
[soft limit, break only after full epoch]

	max_epochs_per_run (int = None) – maximum number of epochs for run

	max_epochs_total (int = None) – maximum total number of epochs for model

	epoch_start (int = None) – start epoch of run

	
limits_exceeded(epoch: int | None = None)

	Check whether any of the runtime limits are exceeded.

	Parameters:

	epoch (int = None) –

	Returns:

	limits_exceeded – flag whether runtime limits are exceeded and run should be stopped;
if limits_exceeded = True, this prints a message for the reason

	Return type:

	bool

	
local_limits_exceeded(epoch: int | None = None)

	Check whether any of the local runtime limits are exceeded. Local runtime
limits include max_epochs_per_run and max_time_per_run, but not max_epochs_total.

	Parameters:

	epoch (int = None) –

	Returns:

	limits_exceeded – flag whether local runtime limits are exceeded

	Return type:

	bool

	
dingo.core.utils.trainutils.copyfile(src, dst)

	copy src to dst.
:param src:
:param dst:
:return:

	
dingo.core.utils.trainutils.save_model(pm, log_dir, model_prefix='model', checkpoint_epochs=None)

	Save model to <model_prefix>_latest.pt in log_dir. Additionally,
all checkpoint_epochs a permanent checkpoint is saved.

	Parameters:

	
	pm – model to be saved

	log_dir (str) – log directory, where model is saved

	model_prefix (str = 'model') – prefix for name of save model

	checkpoint_epochs (int = None) – number of steps between two consecutive model checkpoints

	
dingo.core.utils.trainutils.write_history(log_dir, epoch, train_loss, test_loss, learning_rates, aux=None, filename='history.txt')

	Writes losses and learning rate history to csv file.

	Parameters:

	
	log_dir (str) – directory containing the history file

	epoch (int) – epoch

	train_loss (float) – train_loss of epoch

	test_loss (float) – test_loss of epoch

	learning_rates (list) – list of learning rates in epoch

	aux (list = []) – list of auxiliary information to be logged

	filename (str = 'history.txt') – name of history file

Module contents

 dingo.gw package

dingo.gw package

Subpackages

	dingo.gw.conversion package
	Submodules

	dingo.gw.conversion.spin_conversion module
	cartesian_spins()

	change_spin_conversion_phase()

	component_masses()

	pe_spins()

	Module contents

	dingo.gw.data package
	Submodules

	dingo.gw.data.data_download module
	download_psd()

	download_raw_data()

	dingo.gw.data.data_preparation module
	data_to_domain()

	get_event_data_and_domain()

	load_raw_data()

	parse_settings_for_raw_data()

	dingo.gw.data.event_dataset module
	EventDataset
	EventDataset.dataset_type

	Module contents

	dingo.gw.dataset package
	Submodules

	dingo.gw.dataset.generate_dataset module
	generate_dataset()

	generate_parameters_and_polarizations()

	main()

	parse_args()

	train_svd_basis()

	dingo.gw.dataset.generate_dataset_dag module
	configure_runs()

	create_args_string()

	create_dag()

	main()

	modulus_check()

	parse_args()

	dingo.gw.dataset.utils module
	build_svd_cli()

	merge_datasets()

	merge_datasets_cli()

	dingo.gw.dataset.waveform_dataset module
	WaveformDataset
	WaveformDataset.dataset_type

	WaveformDataset.initialize_decompression()

	WaveformDataset.load_supplemental()

	WaveformDataset.parameter_mean_std()

	WaveformDataset.update_domain()

	Module contents

	dingo.gw.importance_sampling package
	Submodules

	dingo.gw.importance_sampling.diagnostics module
	plot_diagnostics()

	plot_posterior_slice()

	plot_posterior_slice2d()

	dingo.gw.importance_sampling.importance_weights module
	main()

	parse_args()

	Module contents

	dingo.gw.inference package
	Submodules

	dingo.gw.inference.gw_samplers module
	GWSampler

	GWSamplerGNPE

	GWSamplerMixin

	dingo.gw.inference.inference_pipeline module
	analyze_event()

	get_event_data()

	parse_args()

	prepare_log_prob()

	dingo.gw.inference.visualization module
	generate_cornerplot()

	load_ref_samples()

	Module contents

	dingo.gw.noise package
	Subpackages
	dingo.gw.noise.synthetic package
	Submodules

	dingo.gw.noise.synthetic.asd_parameterization module

	dingo.gw.noise.synthetic.asd_sampling module

	dingo.gw.noise.synthetic.generate_dataset module

	dingo.gw.noise.synthetic.utils module

	Module contents

	Submodules

	dingo.gw.noise.asd_dataset module
	ASDDataset
	ASDDataset.dataset_type

	ASDDataset.gps_info

	ASDDataset.length_info

	ASDDataset.sample_random_asds()

	ASDDataset.update_domain()

	dingo.gw.noise.asd_estimation module
	download_and_estimate_cli()

	download_and_estimate_psds()

	dingo.gw.noise.generate_dataset module
	generate_dataset()

	parse_args()

	dingo.gw.noise.generate_dataset_dag module
	create_args_string()

	create_dag()

	split_time_segments()

	dingo.gw.noise.utils module
	CATALOGS

	get_event_gps_times()

	get_time_segments()

	merge_datasets()

	merge_datasets_cli()

	psd_data_path()

	Module contents

	dingo.gw.training package
	Submodules

	dingo.gw.training.train_builders module
	build_dataset()

	build_svd_for_embedding_network()

	set_train_transforms()

	dingo.gw.training.train_pipeline module
	initialize_stage()

	parse_args()

	prepare_training_new()

	prepare_training_resume()

	train_local()

	train_stages()

	dingo.gw.training.train_pipeline_condor module
	copy_logfiles()

	copyfile()

	create_submission_file()

	train_condor()

	dingo.gw.training.utils module
	append_stage()

	Module contents

	dingo.gw.transforms package
	Submodules

	dingo.gw.transforms.detector_transforms module
	ApplyCalibrationUncertainty

	GetDetectorTimes

	ProjectOntoDetectors

	TimeShiftStrain

	time_delay_from_geocenter()

	dingo.gw.transforms.general_transforms module
	UnpackDict

	dingo.gw.transforms.gnpe_transforms module
	GNPEBase
	GNPEBase.inverse()

	GNPEBase.multiply()

	GNPEBase.perturb()

	GNPEBase.sample_proxies()

	GNPECoalescenceTimes

	dingo.gw.transforms.inference_transforms module
	CopyToExtrinsicParameters

	ExpandStrain

	PostCorrectGeocentTime

	ResetSample

	ToTorch

	dingo.gw.transforms.noise_transforms module
	AddWhiteNoiseComplex

	RepackageStrainsAndASDS

	SampleNoiseASD

	WhitenAndScaleStrain

	WhitenFixedASD

	WhitenStrain

	dingo.gw.transforms.parameter_transforms module
	SampleExtrinsicParameters
	SampleExtrinsicParameters.reproduction_dict

	SelectStandardizeRepackageParameters

	StandardizeParameters
	StandardizeParameters.inverse()

	Module contents

	dingo.gw.waveform_generator package
	Submodules

	dingo.gw.waveform_generator.frame_utils module
	convert_J_to_L0_frame()

	get_JL0_euler_angles()

	rotate_y()

	rotate_z()

	dingo.gw.waveform_generator.waveform_generator module
	NewInterfaceWaveformGenerator
	NewInterfaceWaveformGenerator.generate_FD_modes_LO()

	NewInterfaceWaveformGenerator.generate_FD_waveform()

	NewInterfaceWaveformGenerator.generate_TD_modes_L0()

	NewInterfaceWaveformGenerator.generate_TD_modes_L0_conditioned_extra_time()

	NewInterfaceWaveformGenerator.generate_TD_waveform()

	NewInterfaceWaveformGenerator.generate_hplus_hcross_m()

	SEOBNRv4PHM_maximum_starting_frequency()

	WaveformGenerator
	WaveformGenerator.generate_FD_modes_LO()

	WaveformGenerator.generate_FD_waveform()

	WaveformGenerator.generate_TD_modes_L0()

	WaveformGenerator.generate_TD_waveform()

	WaveformGenerator.generate_hplus_hcross()

	WaveformGenerator.generate_hplus_hcross_m()

	WaveformGenerator.setup_mode_array()

	WaveformGenerator.spin_conversion_phase

	generate_waveforms_parallel()

	generate_waveforms_task_func()

	sum_contributions_m()

	dingo.gw.waveform_generator.wfg_utils module
	get_polarizations_from_fd_modes_m()

	get_starting_frequency_for_SEOBRNRv5_conditioning()

	get_tapering_window_for_complex_time_series()

	linked_list_modes_to_dict_modes()

	taper_td_modes_for_SEOBRNRv5_extra_time()

	taper_td_modes_in_place()

	td_modes_to_fd_modes()

	Module contents

Submodules

dingo.gw.SVD module

	
class dingo.gw.SVD.ApplySVD(svd_basis: SVDBasis, inverse: bool = False)

	Bases: object

Transform operator for applying an SVD compression / decompression.

	Parameters:

	
	svd_basis (SVDBasis) –

	inverse (bool) – Whether to apply for the forward (compression) or inverse (decompression)
transform. Default: False.

	
class dingo.gw.SVD.SVDBasis(file_name=None, dictionary=None)

	Bases: DingoDataset

For constructing, provide either file_name, or dictionary containing data and
settings entries, or neither.

	Parameters:

	
	file_name (str) – HDF5 file containing a dataset

	dictionary (dict) – Contains settings and data entries. The data keys should be the same as
save_keys

	data_keys (list) – Variables that should be saved / loaded. This allows for class to store
additional variables beyond those that are saved. Typically, this list
would be provided by any subclass.

	
compress(data: ndarray)

	Convert from data (e.g., frequency series) to compressed representation in
terms of basis coefficients.

	Parameters:

	data (np.ndarray) –

	Return type:

	array of basis coefficients

	
compute_test_mismatches(data: ndarray, parameters: DataFrame | None = None, increment: int = 50, verbose: bool = False)

	Test SVD basis by computing mismatches of compressed / decompressed data
against original data. Results are saved as a DataFrame.

	Parameters:

	
	data (np.ndarray) – Array of data sets to validate against.

	parameters (pd.DataFrame) – Optional labels for the data sets. This is useful for checking performance on
particular regions of the parameter space.

	increment (int) – Specifies SVD truncations for computing mismatches. E.g., increment = 50
means that the SVD will be truncated at size [50, 100, 150, …, len(data)].

	verbose (bool) – Whether to print summary statistics.

	
dataset_type = 'svd_basis'

	

	
decompress(coefficients: ndarray)

	Convert from basis coefficients back to raw data representation.

	Parameters:

	coefficients (np.ndarray) – Array of basis coefficients

	Return type:

	array of decompressed data

	
from_dictionary(dictionary: dict)

	Load the SVD basis from a dictionary.

	Parameters:

	dictionary (dict) – The dictionary should contain at least a ‘V’ key, and optionally an ‘s’ key.

	
from_file(filename)

	Load the SVD basis from a HDF5 file.

	Parameters:

	filename (str) –

	
generate_basis(training_data: ndarray, n: int, method: str = 'random')

	Generate the SVD basis from training data and store it.

The SVD decomposition takes

training_data = U @ diag(s) @ Vh

where U and Vh are unitary.

	Parameters:

	
	training_data (np.ndarray) – Array of waveform data on the physical domain

	n (int) – Number of basis elements to keep.
n=0 keeps all basis elements.

	method (str) – Select SVD method, ‘random’ or ‘scipy’

	
print_validation_summary()

	Print a summary of the validation mismatches.

dingo.gw.domains module

	
class dingo.gw.domains.Domain

	Bases: ABC

Defines the physical domain on which the data of interest live.

This includes a specification of the bins or points,
and a few additional properties associated with the data.

	
abstract property domain_dict

	Enables to rebuild the domain via calling build_domain(domain_dict).

	
abstract property duration: float

	Waveform duration in seconds.

	
abstract property f_max: float

	The maximum frequency [Hz] is set to half the sampling rate.

	
abstract property max_idx: int

	

	
abstract property min_idx: int

	

	
abstract property noise_std: float

	Standard deviation of the whitened noise distribution

	
abstract property sampling_rate: float

	The sampling rate of the data [Hz].

	
abstract time_translate_data(data, dt) → ndarray

	Time translate strain data by dt seconds.

	
abstract update(new_settings: dict)

	

	
class dingo.gw.domains.FrequencyDomain(f_min: float, f_max: float, delta_f: float, window_factor: float | None = None)

	Bases: Domain

Defines the physical domain on which the data of interest live.

The frequency bins are assumed to be uniform between [0, f_max]
with spacing delta_f.
Given a finite length of time domain data, the Fourier domain data
starts at a frequency f_min and is zero below this frequency.
window_kwargs specify windowing used for FFT to obtain FD data from TD
data in practice.

	
static add_phase(data, phase)

	Add a (frequency-dependent) phase to a frequency series. Allows for batching,
as well as additional channels (such as detectors). Accounts for the fact that
the data could be a complex frequency series or real and imaginary parts.

Convention: the phase phi(f) is defined via exp(- 1j * phi(f)).

	Parameters:

	
	data (Union[np.array, torch.Tensor]) –

	phase (Union[np.array, torch.Tensor]) –

	Return type:

	New array or tensor of the same shape as data.

	
property delta_f: float

	The frequency spacing of the uniform grid [Hz].

	
property domain_dict

	Enables to rebuild the domain via calling build_domain(domain_dict).

	
property duration: float

	Waveform duration in seconds.

	
property f_max: float

	The maximum frequency [Hz] is typically set to half the sampling
rate.

	
property f_min: float

	The minimum frequency [Hz].

	
property frequency_mask: ndarray

	Mask which selects frequency bins greater than or equal to the
starting frequency

	
property frequency_mask_length: int

	Number of samples in the subdomain domain[frequency_mask].

	
get_sample_frequencies_astype(data)

	Returns a 1D frequency array compatible with the last index of data array.

Decides whether array is numpy or torch tensor (and cuda vs cpu), and whether it
contains the leading zeros below f_min.

	Parameters:

	data (Union[np.array, torch.Tensor]) – Sample data

	Return type:

	frequency array compatible with last index

	
property max_idx

	

	
property min_idx

	

	
property noise_std: float

	Standard deviation of the whitened noise distribution.

To have noise that comes from a multivariate unit normal
distribution, you must divide by this factor. In practice, this means
dividing the whitened waveforms by this.

TODO: This description makes some assumptions that need to be clarified.
Windowing of TD data; tapering window has a slope -> reduces power only for noise,
but not for the signal which is in the main part unaffected by the taper

	
property sample_frequencies

	

	
property sample_frequencies_torch

	

	
property sample_frequencies_torch_cuda

	

	
property sampling_rate: float

	The sampling rate of the data [Hz].

	
set_new_range(f_min: float | None = None, f_max: float | None = None)

	Set a new range [f_min, f_max] for the domain. This is only allowed if the new
range is contained within the old one.

	
time_translate_data(data, dt)

	Time translate frequency-domain data by dt. Time translation corresponds (in
frequency domain) to multiplication by

\[\exp(-2 \pi i \, f \, dt).\]

This method allows for multiple batch dimensions. For torch.Tensor data,
allow for either a complex or a (real, imag) representation.

	Parameters:

	
	data (array-like (numpy, torch)) – Shape (B, C, N), where

	B corresponds to any dimension >= 0,

	C is either absent (for complex data) or has dimension >= 2 (for data
represented as real and imaginary parts), and

	N is either len(self) or len(self)-self.min_idx (for truncated data).

	dt (torch tensor, or scalar (if data is numpy)) – Shape (B)

	Return type:

	Array-like of the same form as data.

	
update(new_settings: dict)

	Update the domain with new settings. This is only allowed if the new settings
are “compatible” with the old ones. E.g., f_min should be larger than the
existing f_min.

	Parameters:

	new_settings (dict) – Settings dictionary. Must contain a subset of the keys contained in
domain_dict.

	
update_data(data: ndarray, axis: int = -1, low_value: float = 0.0)

	Adjusts data to be compatible with the domain:

	Below f_min, it sets the data to low_value (typically 0.0 for a waveform,
but for a PSD this might be a large value).

	Above f_max, it truncates the data array.

	Parameters:

	
	data (np.ndarray) – Data array

	axis (int) – Which data axis to apply the adjustment along.

	low_value (float) – Below f_min, set the data to this value.

	Returns:

	The new data array.

	Return type:

	np.ndarray

	
property window_factor

	

	
class dingo.gw.domains.PCADomain

	Bases: Domain

TODO

	
property noise_std: float

	Standard deviation of the whitened noise distribution.

To have noise that comes from a multivariate unit normal
distribution, you must divide by this factor. In practice, this means
dividing the whitened waveforms by this.

In the continuum limit in time domain, the standard deviation of white
noise would at each point go to infinity, hence the delta_t factor.

	
class dingo.gw.domains.TimeDomain(time_duration: float, sampling_rate: float)

	Bases: Domain

Defines the physical time domain on which the data of interest live.

The time bins are assumed to be uniform between [0, duration]
with spacing 1 / sampling_rate.
window_factor is used to compute noise_std().

	
property delta_t: float

	The size of the time bins

	
property domain_dict

	Enables to rebuild the domain via calling build_domain(domain_dict).

	
property duration: float

	Waveform duration in seconds.

	
property f_max: float

	The maximum frequency [Hz] is typically set to half the sampling
rate.

	
property max_idx: int

	

	
property min_idx: int

	

	
property noise_std: float

	Standard deviation of the whitened noise distribution.

To have noise that comes from a multivariate unit normal
distribution, you must divide by this factor. In practice, this means
dividing the whitened waveforms by this.

In the continuum limit in time domain, the standard deviation of white
noise would at each point go to infinity, hence the delta_t factor.

	
property sampling_rate: float

	The sampling rate of the data [Hz].

	
time_translate_data(data, dt) → ndarray

	Time translate strain data by dt seconds.

	
dingo.gw.domains.build_domain(settings: Dict) → Domain

	Instantiate a domain class from settings.

	Parameters:

	settings (dict) – Dicionary with ‘type’ key denoting the type of domain, and keys corresponding
to the kwargs needed to construct the Domain.

	Return type:

	A Domain instance of the correct type.

	
dingo.gw.domains.build_domain_from_model_metadata(model_metadata) → Domain

	Instantiate a domain class from settings of model.

	Parameters:

	model_metadata (dict) – model metadata containing information to build the domain
typically obtained from the model.metadata attribute

	Return type:

	A Domain instance of the correct type.

dingo.gw.download_strain_data module

	
dingo.gw.download_strain_data.download_event_data_in_FD(detectors, time_event, time_segment, time_buffer, window, num_segments_psd=128)

	Download event data in frequency domain. This includes strain data for the event at
GPS time t_event as well as the correcponding ASD.

	Parameters:

	
	detectors (list) – list of detectors specified via strings

	time_event (float) – GPS time of the event

	time_segment (float) – length of the strain segment, in seconds

	time_buffer (float) – specifies buffer time after time_event, in seconds

	window (Union(np.ndarray, dict)) – Window used for Fourier transforming the event strain data.
Either provided directly as np.ndarray, or as dict in which case the window is
generated by window = dingo.gw.gwutils.get_window(**window).

	num_segments_psd (int = 128) – number of segments used for PSD generation

	
dingo.gw.download_strain_data.download_strain_data_in_FD(det, time_event, time_segment, time_buffer, window)

	Download strain data for a GW event at GPS time time_event. The segment is
time_segment seconds long, including time_buffer seconds after the event. The
strain is Fourier transformed, the frequency domain strain is then time shifted by
time_buffer, such that the event occurs at t=0.

	Parameters:

	
	det (str) – detector

	time_event (float) – GPS time of the event

	time_segment (float) – length of the strain segment, in seconds

	time_buffer (float) – specifies buffer time after time_event, in seconds

	window (Union(np.ndarray, dict)) – Window used for Fourier transforming the event strain data.
Either provided directly as np.ndarray, or as dict in which case the window is
generated by window = dingo.gw.gwutils.get_window(**window).

	Returns:

	event_strain – array with the frequency domain strain

	Return type:

	np.array

	
dingo.gw.download_strain_data.estimate_single_psd(time_start, time_segment, window, f_s=4096, num_segments: int = 128, det=None, channel=None)

	Download strain data and generate a PSD based on these. Use num_segments of length
time_segment, starting at GPS time time_start. If no channel is specified, GWOSC is used
to download the data.

	Parameters:

	
	time_start (float) – start GPS time for PSD estimation

	time_segment (float) – time for a single segment for PSD information, in seconds

	window (Union(np.ndarray, dict)) – Window used for PSD generation, needs to be the same as used for Fourier
transform of event strain data.
Either provided directly as np.ndarray, or as dict in which case the window is
generated by window = dingo.gw.gwutils.get_window(**window).

	num_segments (int = 256) – number of segments used for PSD generation

	det (str) – If provided, will download data from GWOSC using TimeSeries.fetch_open_data(). Mutually exclusive with ‘channel’.

	channel (str) – If provided, will download the data from the channel instead of gwosc using TimeSeries.get()

	Returns:

	psd – array of psd

	Return type:

	np.array

dingo.gw.gwutils module

	
dingo.gw.gwutils.get_extrinsic_prior_dict(extrinsic_prior)

	Build dict for extrinsic prior by starting with
default_extrinsic_dict, and overwriting every element for which
extrinsic_prior is not default.
TODO: Move to dingo.gw.prior.py?

	
dingo.gw.gwutils.get_mismatch(a, b, domain, asd_file=None)

	Mistmatch is 1 - overlap, where overlap is defined by
inner(a, b) / sqrt(inner(a, a) * inner(b, b)).
See e.g. Eq. (44) in https://arxiv.org/pdf/1106.1021.pdf.

	Parameters:

	
	a –

	b –

	domain –

	asd_file –

	
dingo.gw.gwutils.get_standardization_dict(extrinsic_prior_dict, wfd, selected_parameters, transform=None)

	Calculates the mean and standard deviation of parameters. This is needed for
standardizing neural-network input and output.

	Parameters:

	
	extrinsic_prior_dict (dict) –

	wfd (WaveformDataset) –

	selected_parameters (list[str]) – List of parameters for which to estimate standardization factors.

	transform (Transform) – Operator that will generate samples for parameters contained in
selected_parameters that are not contained in the intrinsic or extrinsic prior.
(E.g., H1_time, L1_time_proxy)

	
dingo.gw.gwutils.get_window(window_kwargs)

	Compute window from window_kwargs.

	
dingo.gw.gwutils.get_window_factor(window)

	Compute window factor. If window is not provided as array or tensor but as
window_kwargs, first build the window.

dingo.gw.injection module

	
class dingo.gw.injection.GWSignal(wfg_kwargs: dict, wfg_domain: FrequencyDomain, data_domain: FrequencyDomain, ifo_list: list, t_ref: float)

	Bases: object

Base class for generating gravitational wave signals in interferometers. Generates
waveform polarizations based on provided parameters, and then projects to detectors.

Includes option for whitening the signal based on a provided ASD.

	Parameters:

	
	wfg_kwargs (dict) – Waveform generator parameters [approximant, f_ref, and (optionally) f_start].

	wfg_domain (FrequencyDomain) – Domain used for waveform generation. This can potentially deviate from the
final domain, having a wider frequency range needed for waveform generation.

	data_domain (FrequencyDomain) – Domain object for final signal.

	ifo_list (list) – Names of interferometers for projection.

	t_ref (float) – Reference time that specifies ifo locations.

	
property asd

	Amplitude spectral density.

Either a single array, a dict (for individual interferometers),
or an ASDDataset, from which random ASDs are drawn.

	
property calibration_marginalization_kwargs

	Dictionary with the following keys:

	calibration_envelope
	Dictionary of the form {“H1”: filepath, “L1”: filepath, …} with locations of
lookup tables for the calibration uncertainty curves.

	num_calibration_nodes
	Number of nodes for the calibration model.

	num_calibration_curves
	Number of calibration curves to use in marginalization.

	
signal(theta)

	Compute the GW signal for parameters theta.

Step 1: Generate polarizations
Step 2: Project polarizations onto detectors; optionally (depending on
self.whiten) whiten and scale.

	Parameters:

	theta (dict) – Signal parameters. Includes intrinsic parameters to be passed to waveform
generator, and extrinsic parameters for detector projection.

	Returns:

	
	keys:
	waveform: GW strain signal for each detector.
extrinsic_parameters: {}
parameters: waveform parameters
asd (if set): amplitude spectral density for each detector

	Return type:

	dict

	
signal_m(theta)

	Compute the GW signal for parameters theta. Same as self.signal(theta) method,
but it does not sum the contributions of the individual modes, and instead
returns a dict {m: pol_m for m in [-l_max,…,0,…,l_max]} where each
contribution pol_m transforms as exp(-1j * m * phase_shift) under phase shifts.

Step 1: Generate polarizations
Step 2: Project polarizations onto detectors;

optionally (depending on self.whiten) whiten and scale.

	Parameters:

	theta (dict) – Signal parameters. Includes intrinsic parameters to be passed to waveform
generator, and extrinsic parameters for detector projection.

	Returns:

	
	keys:
	
	waveform:
	GW strain signal for each detector, with individual contributions
{m: pol_m for m in [-l_max,…,0,…,l_max]}

extrinsic_parameters: {}
parameters: waveform parameters
asd (if set): amplitude spectral density for each detector

	Return type:

	dict

	
property whiten

	Bool specifying whether to whiten (and scale) generated signals.

	
class dingo.gw.injection.Injection(prior, **gwsignal_kwargs)

	Bases: GWSignal

Produces injections of signals (with random or specified parameters) into stationary
Gaussian noise. Output is not whitened.

	Parameters:

	
	prior (PriorDict) – Prior used for sampling random parameters.

	gwsignal_kwargs – Arguments to be passed to GWSignal base class.

	
classmethod from_posterior_model_metadata(metadata)

	Instantiate an Injection based on a posterior model. The prior, waveform
settings, etc., will all be consistent with what the model was trained with.

	Parameters:

	metadata (dict) – Dict which you can get via PosteriorModel.metadata

	
injection(theta)

	Generate an injection based on specified parameters.

This is a signal + noise consistent with the amplitude spectral density in
self.asd. If self.asd is an ASDDataset, then it uses a random ASD from this
dataset.

Data are not whitened.

	Parameters:

	theta (dict) – Parameters used for injection.

	Returns:

	
	keys:
	waveform: data (signal + noise) in each detector
extrinsic_parameters: {}
parameters: waveform parameters
asd (if set): amplitude spectral density for each detector

	Return type:

	dict

	
random_injection()

	Generate a random injection.

This is a signal + noise consistent with the amplitude spectral density in
self.asd. If self.asd is an ASDDataset, then it uses a random ASD from this
dataset.

Data are not whitened.

	Returns:

	
	keys:
	waveform: data (signal + noise) in each detector
extrinsic_parameters: {}
parameters: waveform parameters
asd (if set): amplitude spectral density for each detector

	Return type:

	dict

dingo.gw.likelihood module

	
class dingo.gw.likelihood.StationaryGaussianGWLikelihood(wfg_kwargs, wfg_domain, data_domain, event_data, t_ref=None, time_marginalization_kwargs=None, phase_marginalization_kwargs=None, calibration_marginalization_kwargs=None, phase_grid=None)

	Bases: GWSignal, Likelihood

Implements GW likelihood for stationary, Gaussian noise.

	Parameters:

	
	wfg_kwargs (dict) – Waveform generator parameters (at least approximant and f_ref).

	wfg_domain (dingo.gw.domains.Domain) – Domain used for waveform generation. This can potentially deviate from the
final domain, having a wider frequency range needed for waveform generation.

	data_domain (dingo.gw.domains.Domain) – Domain object for event data.

	event_data (dict) – GW data. Contains strain data in event_data[“waveforms”] and asds in
event_data[“asds”].

	t_ref (float) – Reference time; true geocent time for GW is t_ref + theta[“geocent_time”].

	time_marginalization_kwargs (dict) – Time marginalization parameters. If None, no time marginalization is used.

	calibration_marginalization_kwargs (dict) – Calibration marginalization parameters. If None, no calibration marginalization is used.

	phase_marginalization_kwargs (dict) – Phase marginalization parameters. If None, no phase marginalization is used.

	
d_inner_h_complex(theta)

	Calculate the complex inner product (d | h(theta)) between the stored data d
and a simulated waveform with given parameters theta.

	Parameters:

	theta (dict) – Parameters at which to evaluate h.

	Returns:

	complex

	Return type:

	Inner product

	
d_inner_h_complex_multi(theta: DataFrame, num_processes: int = 1) → ndarray

	Calculate the complex inner product (d | h(theta)) between the stored data d
and a simulated waveform with given parameters theta. Works with multiprocessing.

	Parameters:

	
	theta (pd.DataFrame) – Parameters at which to evaluate h.

	num_processes (int) – Number of parallel processes to use.

	Returns:

	complex

	Return type:

	Inner product

	
initialize_time_marginalization(t_lower, t_upper, n_fft=1)

	Initialize time marginalization. Time marginalization can be performed via FFT,
which is super fast. However, this limits the time resolution to delta_t =
1/self.data_domain.f_max. In order to allow for a finer time resolution we
compute the time marginalized likelihood n_fft via FFT on a grid of n_fft
different time shifts [0, delta_t, 2*delta_t, …, (n_fft-1)*delta_t] and
average over the time shifts. The effective time resolution is thus

delta_t_eff = delta_t / n_fft = 1 / (f_max * n_fft).

Note: Time marginalization in only implemented for uniform time priors.

	Parameters:

	
	t_lower (float) – Lower time bound of the uniform time prior.

	t_upper (float) – Upper time bound of the uniform time prior.

	n_fft (int = 1) – Size of grid for FFT for time marginalization.

	
log_likelihood(theta)

	

	
log_likelihood_phase_grid(theta, phases=None)

	

	
dingo.gw.likelihood.build_stationary_gaussian_likelihood(metadata, event_dataset=None, time_marginalization_kwargs=None)

	Build a StationaryGaussianLikelihoodBBH object from the metadata.

	Parameters:

	
	metadata (dict) – Metadata from stored dingo parameter samples file.
Typially accessed via pd.read_pickle(/path/to/dingo-output.pkl).metadata.

	event_dataset (str = None) – Path to event dataset for caching. If None, don’t cache.

	time_marginalization_kwargs (dict = None) – Forwarded to the likelihood.

	Returns:

	likelihood – likelihood object

	Return type:

	StationaryGaussianGWLikelihood

	
dingo.gw.likelihood.get_wfg(wfg_kwargs, data_domain, frequency_range=None)

	Set up waveform generator from wfg_kwargs. The domain of the wfg is primarily
determined by the data domain, but a new (larger) frequency range can be
specified if this is necessary for the waveforms to be generated successfully
(e.g., for EOB waveforms which require a sufficiently small f_min and sufficiently
large f_max).

	Parameters:

	
	wfg_kwargs (dict) – Waveform generator parameters.

	data_domain (dingo.gw.domains.Domain) – Domain of event data, with bounds determined by likelihood integral.

	frequency_range (dict = None) – Frequency range for waveform generator. If None, that of data domain is used,
which corresponds to the bounds of the likelihood integral.
Possible keys:

	’f_start’: float
	Frequency at which to start the waveform generation. Overrides f_start in
metadata[“model”][“dataset_settings”][“waveform_generator”].

	’f_end’: float
	Frequency at which to start the waveform generation.

	Returns:

	wfg – Waveform generator object.

	Return type:

	dingo.gw.waveform_generator.WaveformGenerator

	
dingo.gw.likelihood.inner_product(a, b, min_idx=0, delta_f=None, psd=None)

	Compute the inner product between two complex arrays. There are two modes: either,
the data a and b are not whitened, in which case delta_f and the psd must be
provided. Alternatively, if delta_f and psd are not provided, the data a and b are
assumed to be whitened already (i.e., whitened as d -> d * sqrt(4 delta_f / psd)).

Note: sum is only taken along axis 0 (which is assumed to be the frequency axis),
while other axes are preserved. This is e.g. useful when evaluating kappa2 on a
phase grid.

	Parameters:

	
	a (np.ndaarray) – First array with frequency domain data.

	b (np.ndaarray) – Second array with frequency domain data.

	min_idx (int = 0) – Truncation of likelihood integral, index of lowest frequency bin to consider.

	delta_f (float) – Frequency resolution of the data. If None, a and b are assumed to be whitened
and the inner product is computed without further whitening.

	psd (np.ndarray = None) – PSD of the data. If None, a and b are assumed to be whitened and the inner
product is computed without further whitening.

	Returns:

	inner_product

	Return type:

	float

	
dingo.gw.likelihood.inner_product_complex(a, b, min_idx=0, delta_f=None, psd=None)

	Same as inner product, but without taking the real part. Retaining phase
information is useful for the phase-marginalized likelihood. For further
documentation see inner_product function.

	
dingo.gw.likelihood.main()

	

dingo.gw.ls_cli module

	
dingo.gw.ls_cli.determine_dataset_type(file_name)

	

	
dingo.gw.ls_cli.ls()

	

dingo.gw.prior module

	
class dingo.gw.prior.BBHExtrinsicPriorDict(dictionary=None, filename=None, aligned_spin=False, conversion_function=None)

	Bases: BBHPriorDict

This class is the same as BBHPriorDict except that it does not require mass parameters.

It also contains a method for estimating the standardization parameters.

	TODO:
	
	Add support for zenith/azimuth

	Defaults?

Initialises a Prior set for Binary Black holes

	Parameters:

	
	dictionary (dict, optional) – See superclass

	filename (str, optional) – See superclass

	conversion_function (func) – Function to convert between sampled parameters and constraints.
By default this generates many additional parameters, see
BBHPriorDict.default_conversion_function

	
default_conversion_function(sample)

	Default parameter conversion function for BBH signals.

This generates:
- the parameters passed to source.lal_binary_black_hole
- all mass parameters

It does not generate:
- component spins
- source-frame parameters

	Parameters:

	sample (dict) – Dictionary to convert

	Returns:

	sample – Same as input

	Return type:

	dict

	
mean_std(keys=[], sample_size=50000, force_numerical=False)

	Calculate the mean and standard deviation over the prior.

	Parameters:

	
	keys (list(str)) – A list of desired parameter names

	sample_size (int) – For nonanalytic priors, number of samples to use to estimate the
result.

	force_numerical (bool (False)) – Whether to force a numerical estimation of result, even when
analytic results are available (useful for testing)

	deviations. (Returns dictionaries for the means and standard) –

	TODO (Fix for constrained priors. Shouldn't be an issue for extrinsic parameters.) –

	
dingo.gw.prior.build_prior_with_defaults(prior_settings: Dict[str, str])

	Generate BBHPriorDict based on dictionary of prior settings,
allowing for default values.

	Parameters:

	
	prior_settings (Dict) – A dictionary containing prior definitions for intrinsic parameters
Allowed values for each parameter are:

	’default’ to use a default prior

	
	a string for a custom prior, e.g.,
	”Uniform(minimum=10.0, maximum=80.0, name=None, latex_label=None, unit=None, boundary=None)”

	a (Depending on the particular prior choices the dimensionality of) –

	vary. (parameter sample obtained from the returned GWPriorDict will) –

	
dingo.gw.prior.split_off_extrinsic_parameters(theta)

	Split theta into intrinsic and extrinsic parameters.

	Parameters:

	theta (dict) – BBH parameters. Includes intrinsic parameters to be passed to waveform
generator, and extrinsic parameters for detector projection.

	Returns:

	
	theta_intrinsic (dict) – BBH intrinsic parameters.

	theta_extrinsic (dict) – BBH extrinsic parameters.

dingo.gw.result module

	
class dingo.gw.result.Result(**kwargs)

	Bases: Result

A dataset class to hold a collection of gravitational-wave parameter samples and
perform various operations on them.

Compared to the base class, this class implements the domain, prior,
and likelihood. It also includes a method for sampling the binary reference phase
parameter based on the other parameters and the likelihood.

	Attributes:
	
	samplespd.Dataframe
	Contains parameter samples, as well as (possibly) log_prob, log_likelihood,
weights, log_prior, delta_log_prob_target.

	domainDomain
	The domain of the data (e.g., FrequencyDomain), needed for calculating
likelihoods.

	priorPriorDict
	The prior distribution, used for importance sampling.

	likelihoodLikelihood
	The Likelihood object, needed for importance sampling.

	contextdict
	Context data from which the samples were produced (e.g., strain data, ASDs).

	metadatadict
	Metadata inherited from the Sampler object. This describes the neural
networks and sampling settings used.

	event_metadatadict
	Metadata for the event analyzed, including time, data conditioning, channel,
and detector information.

	log_evidencefloat
	Calculated log(evidence) after importance sampling.

	log_evidence_stdfloat (property)
	Standard deviation of the log(evidence)

	effective_sample_size, n_efffloat (property)
	Number of effective samples, (sum_i w_i)^2 / sum_i w_i^2

	sample_efficiencyfloat (property)
	Number of effective samples / Number of samples

	synthetic_phase_kwargsdict
	kwargs describing the synthetic phase sampling.

For constructing, provide either file_name, or dictionary containing data and
settings entries, or neither.

	Parameters:

	
	file_name (str) – HDF5 file containing a dataset

	dictionary (dict) – Contains settings and data entries. The data keys should be the same as
save_keys

	data_keys (list) – Variables that should be saved / loaded. This allows for class to store
additional variables beyond those that are saved. Typically, this list
would be provided by any subclass.

	
property approximant

	

	
property calibration_marginalization_kwargs

	

	
dataset_type = 'gw_result'

	

	
property f_ref

	

	
get_samples_bilby_phase()

	Convert the spin angles phi_jl and theta_jn to account for a difference in
phase definition compared to Bilby.

	Returns:

	Samples

	Return type:

	pd.DataFrame

	
property interferometers

	

	
property pesummary_prior

	The prior in a form suitable for PESummary.

By convention, Dingo stores all times relative to a reference time, typically
the trigger time for an event. The prior returned here corrects for that offset to
be consistent with other codes.

	
property pesummary_samples

	Samples in a form suitable for PESummary.

These samples are adjusted to undo certain conventions used internally by
Dingo:

	Times are corrected by the reference time t_ref.

	Samples are unweighted, using a fixed random seed for sampling importance

resampling.
* The spin angles phi_jl and theta_jn are transformed to account for a
difference in phase definition.
* Some columns are dropped: delta_log_prob_target, log_prob

	
property phase_marginalization_kwargs

	

	
sample_synthetic_phase(synthetic_phase_kwargs, inverse: bool = False)

	Sample a synthetic phase for the waveform. This is a post-processing step
applicable to samples theta in the full parameter space, except for the phase
parameter (i.e., 14D samples). This step adds a phase parameter to the samples
based on likelihood evaluations.

A synthetic phase is sampled as follows.

	Compute and cache the modes for the waveform mu(theta, phase=0) for
phase 0, organize them such that each contribution m transforms as
exp(-i * m * phase).

	Compute the likelihood on a phase grid, by computing mu(theta, phase) from
the cached modes. In principle this likelihood is exact, however, it can
deviate slightly from the likelihood computed without cached modes for
various technical reasons (e.g., slightly different windowing of cached
modes compared to full waveform when transforming TD waveform to FD).
These small deviations can be fully accounted for by importance sampling.
Note: when approximation_22_mode=True, the entire waveform is assumed
to transform as exp(2i*phase), in which case the likelihood is only exact
if the waveform is fully dominated by the (2, 2) mode.

	Build a synthetic conditional phase distribution based on this grid. We
use an interpolated prior distribution bilby.core.prior.Interped,
such that we can sample and also evaluate the log_prob. We add a constant
background with weight self.synthetic_phase_kwargs to the kde to make
sure that we keep a mass-covering property. With this, the importance
sampling will yield exact results even when the synthetic phase conditional
is just an approximation.

Besides adding phase samples to self.samples[‘phase’], this method also modifies
self.samples[‘log_prob’] by adding the log_prob of the synthetic phase
conditional.

This method modifies self.samples in place.

	Parameters:

	
	synthetic_phase_kwargs (dict) –
	This should consist of the kwargs
	approximation_22_mode (optional)
num_processes (optional)
n_grid
uniform_weight (optional)

	inverse (bool, default False) – Whether to apply instead the inverse transformation. This is used prior to
calculating the log_prob. In inverse mode, the posterior probability over
phase is calculated for given samples. It is stored in self.samples[
‘log_prob’].

	
property synthetic_phase_kwargs

	

	
property t_ref

	

	
property time_marginalization_kwargs

	

	
update_prior(prior_update)

	Update the prior based on a new dict of priors. Use the existing prior for
parameters not included in the new dict.

If class samples have not been importance sampled, then save new sample weights
based on the new prior. If class samples have been importance sampled,
then update the weights.

	Parameters:

	prior_update (dict) – Priors to update. This should be of the form {key : prior_str}, where str
is a string that can instantiate a prior via PriorDict(prior_update). The
prior_update is provided in this form so that it can be properly saved with
the Result and later instantiated.

dingo.gw.temporary_debug_utils module

	
dingo.gw.temporary_debug_utils.save_training_injection(outname, pm, data, idx=0)

	For debugging: extract a training injection. To be used inside train or test loop.

Module contents

 dingo.gw.conversion package

dingo.gw.conversion package

Submodules

dingo.gw.conversion.spin_conversion module

	
dingo.gw.conversion.spin_conversion.cartesian_spins(p, f_ref)

	Transform PE spins to cartesian spins.

	Parameters:

	
	p (dict) – contains parameters, including PE spins

	f_ref (float) – reference frequency for definition of spins

	Returns:

	result – parameters, including cartesian spins

	Return type:

	dict

	
dingo.gw.conversion.spin_conversion.change_spin_conversion_phase(samples, f_ref, sc_phase_old, sc_phase_new)

	Change the phase used to convert cartesian spins to PE spins. The cartesian spins
are independent of the spin conversion phase. When converting from cartesian spins
to PE spins, the phase value has an impact on theta_jn and phi_jl.

The usual convention for the PE spins is to use the phase parameter for the conversion
(cart. spins <–> PE spins), but for dingo-IS with the synthetic phase extension we
need to use another convention, where the PE spins are defined with spin conversion
phase 0. This function transforms between the different conventions.

	Parameters:

	
	samples (pd.Dataframe) – Parameters.

	f_ref (float) – Reference frequency for definition of spins.

	sc_phase_old (float or None) – Spin conversion phase used for input parameters. If None, use the phase parameter.

	sc_phase_new (float or None) – Spin conversion phase used for output parameters. If None, use the phase
parameter.

	Returns:

	parameters with changed spin conversion phase

	Return type:

	p_new

	
dingo.gw.conversion.spin_conversion.component_masses(p)

	

	
dingo.gw.conversion.spin_conversion.pe_spins(p, f_ref)

	Transform cartesian spins to PE spins.

	Parameters:

	
	p (dict) – contains parameters, including cartesian spins

	f_ref (float) – reference frequency for definition of spins

	Returns:

	result – parameters, including PE spins

	Return type:

	dict

Module contents

 dingo.gw.data package

dingo.gw.data package

Submodules

dingo.gw.data.data_download module

	
dingo.gw.data.data_download.download_psd(det, time_start, time_psd, window, f_s)

	Download strain data and generate a PSD based on these. Use num_segments of length
time_segment, starting at GPS time time_start.

	Parameters:

	
	det (str) – detector

	time_start (float) – start GPS time for PSD estimation

	time_psd (float = 1024) – time in seconds for strain used for PSD generation

	window (Union(np.ndarray, dict)) – Window used for PSD generation, needs to be the same as used for Fourier
transform of event strain data.
Provided as dict, window is generated by window = dingo.gw.gwutils.get_window(
**window).

	f_s (float) – sampling rate of strain data

	Returns:

	psd – array of psd

	Return type:

	np.array

	
dingo.gw.data.data_download.download_raw_data(time_event, time_segment, time_psd, time_buffer, detectors, window, f_s)

	

dingo.gw.data.data_preparation module

	
dingo.gw.data.data_preparation.data_to_domain(raw_data, settings_raw_data, domain, **kwargs)

	
	Parameters:

	
	raw_data –

	settings_raw_data –

	model_metadata –

	Returns:

	data – dict with domain_data

	Return type:

	dict

	
dingo.gw.data.data_preparation.get_event_data_and_domain(model_metadata, time_event, time_psd, time_buffer, event_dataset=None)

	

	
dingo.gw.data.data_preparation.load_raw_data(time_event, settings, event_dataset=None)

	Load raw event data.

	If event_dataset is provided and event data is saved in it, load and return the data

	Else, event data is downloaded. If event_dataset is provided, the event data is
additionally saved to the file.

	Parameters:

	
	time_event (float) – gps time of the events

	settings (dict) – dict with the settings

	event_dataset (str) – name of the event dataset file

	
dingo.gw.data.data_preparation.parse_settings_for_raw_data(model_metadata, time_psd, time_buffer)

	

dingo.gw.data.event_dataset module

	
class dingo.gw.data.event_dataset.EventDataset(file_name=None, dictionary=None)

	Bases: DingoDataset

Dataset class for storing single event.

For constructing, provide either file_name, or dictionary containing data and
settings entries, or neither.

	Parameters:

	
	file_name (str) – HDF5 file containing a dataset

	dictionary (dict) – Contains settings and data entries. The data keys should be the same as
save_keys

	data_keys (list) – Variables that should be saved / loaded. This allows for class to store
additional variables beyond those that are saved. Typically, this list
would be provided by any subclass.

	
dataset_type = 'event_dataset'

	

Module contents

 dingo.gw.dataset package

dingo.gw.dataset package

Submodules

dingo.gw.dataset.generate_dataset module

	
dingo.gw.dataset.generate_dataset.generate_dataset(settings: Dict, num_processes: int) → WaveformDataset

	Generate a waveform dataset.

	Parameters:

	
	settings (dict) – Dictionary of settings to configure the dataset

	num_processes (int) –

	Return type:

	A WaveformDataset based on the settings.

	
dingo.gw.dataset.generate_dataset.generate_parameters_and_polarizations(waveform_generator: WaveformGenerator, prior: BBHPriorDict, num_samples: int, num_processes: int) → Tuple[DataFrame, Dict[str, ndarray]]

	Generate a dataset of waveforms based on parameters drawn from the prior.

	Parameters:

	
	waveform_generator (WaveformGenerator) –

	prior (Prior) –

	num_samples (int) –

	num_processes (int) –

	Returns:

	
	pandas DataFrame of parameters

	dictionary of numpy arrays corresponding to waveform polarizations

	
dingo.gw.dataset.generate_dataset.main()

	

	
dingo.gw.dataset.generate_dataset.parse_args()

	

	
dingo.gw.dataset.generate_dataset.train_svd_basis(dataset: WaveformDataset, size: int, n_train: int)

	Train (and optionally validate) an SVD basis.

	Parameters:

	
	dataset (WaveformDataset) – Contains waveforms to be used for building SVD.

	size (int) – Number of elements to keep for the SVD basis.

	n_train (int) – Number of training waveforms to use. Remaining are used for validation. Note
that the actual number of training waveforms is n_train * len(polarizations),
since there is one waveform used for each polarization.

	Returns:

	Since EOB waveforms can fail to generate, provide also the number used in
training and validation.

	Return type:

	SVDBasis, n_train, n_test

dingo.gw.dataset.generate_dataset_dag module

	
dingo.gw.dataset.generate_dataset_dag.configure_runs(settings, num_jobs, temp_dir)

	Prepare and save settings .yaml files for generating subsets of the dataset.
Generally this will produce two .yaml files, one for generating the main dataset,
one for the SVD training.

	Parameters:

	
	settings (dict) – Settings for full dataset configuration.

	num_jobs (int) – Number of jobs over which to split the run.

	temp_dir (str) – Name of (temporary) directory in which to place temporary output files.

	
dingo.gw.dataset.generate_dataset_dag.create_args_string(args_dict: Dict)

	Generate argument string from dictionary of argument names and arguments.

	
dingo.gw.dataset.generate_dataset_dag.create_dag(args, settings)

	Create a Condor DAG from command line arguments to carry out the five steps in the
workflow.

	
dingo.gw.dataset.generate_dataset_dag.main()

	

	
dingo.gw.dataset.generate_dataset_dag.modulus_check(a: int, b: int, a_label: str, b_label: str)

	Raise error if a % b != 0.

	
dingo.gw.dataset.generate_dataset_dag.parse_args()

	

dingo.gw.dataset.utils module

	
dingo.gw.dataset.utils.build_svd_cli()

	Command-line function to build an SVD based on an uncompressed dataset file.

	
dingo.gw.dataset.utils.merge_datasets(dataset_list: List[WaveformDataset]) → WaveformDataset

	Merge a collection of datasets into one.

	Parameters:

	dataset_list (list[WaveformDataset]) – A list of WaveformDatasets. Each item should be a dictionary containing
parameters and polarizations.

	Return type:

	WaveformDataset containing the merged data.

	
dingo.gw.dataset.utils.merge_datasets_cli()

	Command-line function to combine a collection of datasets into one. Used for
parallelized waveform generation.

dingo.gw.dataset.waveform_dataset module

	
class dingo.gw.dataset.waveform_dataset.WaveformDataset(file_name=None, dictionary=None, transform=None, precision=None, domain_update=None, svd_size_update=None)

	Bases: DingoDataset, Dataset

This class stores a dataset of waveforms (polarizations) and corresponding
parameters.

It can load the dataset either from an HDF5 file or suitable dictionary.

Once a waveform data set is in memory, the waveform data are consumed through a
__getitem__() call, optionally applying a chain of transformations, which are classes
that implement a __call__() method.

For constructing, provide either file_name, or dictionary containing data and
settings entries, or neither.

	Parameters:

	
	file_name (str) – HDF5 file containing a dataset

	dictionary (dict) – Contains settings and data entries. The dictionary keys should be
‘settings’, ‘parameters’, and ‘polarizations’.

	transform (Transform) – Transform to be applied to dataset samples when accessed through __getitem__

	precision (str ('single', 'double')) – If provided, changes precision of loaded dataset.

	domain_update (dict) – If provided, update domain from existing domain using new settings.

	svd_size_update (int) – If provided, reduces the SVD size when decompressing (for speed).

	
dataset_type = 'waveform_dataset'

	

	
initialize_decompression(svd_size_update: int | None = None)

	Sets up decompression transforms. These are applied to the raw dataset before
self.transform. E.g., SVD decompression.

	Parameters:

	svd_size_update (int) – If provided, reduces the SVD size when decompressing (for speed).

	
load_supplemental(domain_update=None, svd_size_update=None)

	Method called immediately after loading a dataset.

Creates (and possibly updates) domain, updates dtypes, and initializes any
decompression transform. Also zeros data below f_min, and truncates above f_max.

	Parameters:

	
	domain_update (dict) – If provided, update domain from existing domain using new settings.

	svd_size_update (int) – If provided, reduces the SVD size when decompressing (for speed).

	
parameter_mean_std()

	

	
update_domain(domain_update: dict | None = None)

	Update the domain based on new configuration.

The waveform dataset provides waveform polarizations in a particular domain. In
Frequency domain, this is [0, domain._f_max]. Furthermore, data is set to 0 below
domain._f_min. In practice one may want to train a network based on slightly
different domain settings, which corresponds to truncating the likelihood
integral.

This method provides functionality for that. It truncates and/or zeroes the
dataset to the range specified by the domain, by calling domain.update_data.

	Parameters:

	domain_update (dict) – Settings dictionary. Must contain a subset of the keys contained in
domain_dict.

Module contents

 dingo.gw.importance_sampling package

dingo.gw.importance_sampling package

Submodules

dingo.gw.importance_sampling.diagnostics module

	
dingo.gw.importance_sampling.diagnostics.plot_diagnostics(result: Result, outdir, num_processes=1, num_slice_plots=0, n_grid_slice1d=200, n_grid_slice2d=100, params_slice2d=None)

	

	
dingo.gw.importance_sampling.diagnostics.plot_posterior_slice(sampler, theta, theta_range, outname=None, num_processes=1, n_grid=200, parameters=None, normalize_conditionals=False)

	

	
dingo.gw.importance_sampling.diagnostics.plot_posterior_slice2d(sampler, theta, theta_range, n_grid=100, num_processes=1, outname=None)

	

dingo.gw.importance_sampling.importance_weights module

Step 1: Train unconditional nde
Step 2: Set up likelihood and prior

	
dingo.gw.importance_sampling.importance_weights.main()

	

	
dingo.gw.importance_sampling.importance_weights.parse_args()

	

Module contents

Implements sampling-importance-resampling (sir) for GW posteriors.

 dingo.gw.inference package

dingo.gw.inference package

Submodules

dingo.gw.inference.gw_samplers module

	
class dingo.gw.inference.gw_samplers.GWSampler(**kwargs)

	Bases: GWSamplerMixin, Sampler

Sampler for gravitational-wave inference using neural posterior estimation.
Augments the base class by defining transform_pre and transform_post to prepare
data for the inference network.

	transform_pre :
	
	Whitens strain.

	Repackages strain data and the inverse ASDs (suitably scaled) into a torch
tensor.

	transform_post :
	
	Extract the desired inference parameters from the network output (
array-like), de-standardize them, and repackage as a dict.

Also mixes in GW functionality for building the domain and correcting the reference
time.

Allows for conditional and unconditional models, and draws samples from the model
based on (optional) context data.

This is intended for use either as a standalone sampler, or as a sampler producing
initial sample points for a GNPE sampler.

	Parameters:

	kwargs – Keyword arguments that are forwarded to the superclass.

	
class dingo.gw.inference.gw_samplers.GWSamplerGNPE(**kwargs)

	Bases: GWSamplerMixin, GNPESampler

Gravitational-wave GNPE sampler. It wraps a PosteriorModel and a standard Sampler for
initialization. The former is used to generate initial samples for Gibbs sampling.

Compared to the base class, this class implements the required transforms for
preparing data and parameters for the network. This includes GNPE transforms,
data processing transforms, and standardization/de-standardization of parameters.

A GNPE network is conditioned on additional “proxy” context theta^, i.e.,

p(theta | theta^, d)

The theta^ depend on theta via a fixed kernel p(theta^ | theta). Combining these
known distributions, this class uses Gibbs sampling to draw samples from the joint
distribution,

p(theta, theta^ | d)

The advantage of this approach is that we are allowed to perform any transformation of
d that depends on theta^. In particular, we can use this freedom to simplify the
data, e.g., by aligning data to have merger times = 0 in each detector. The merger
times are unknown quantities that must be inferred jointly with all other
parameters, and GNPE provides a means to do this iteratively. See
https://arxiv.org/abs/2111.13139 for additional details.

Gibbs sampling breaks access to the probability density, so this must be recovered
through other means. One way is to train an unconditional flow to represent p(theta^
| d) for fixed d based on the samples produced through the GNPE Gibbs sampling.
Starting from these, a single Gibbs iteration gives theta from the GNPE network,
along with the probability density in the joint space. This is implemented in
GNPESampler provided the init_sampler provides proxies directly and num_iterations
= 1.

Attributes (beyond those of Sampler)

	init_samplerSampler
	Used for providing initial samples for Gibbs sampling.

	num_iterationsint
	Number of Gibbs iterations to perform.

	iteration_trackerIterationTracker
	not set up

	remove_init_outliersfloat
	not set up

	param kwargs:

	Keyword arguments that are forwarded to the superclass.

	
class dingo.gw.inference.gw_samplers.GWSamplerMixin(**kwargs)

	Bases: object

	Mixin class designed to add gravitational wave functionality to Sampler classes:
	
	builder for data domain

	correction for fixed detector locations during training (t_ref)

	Parameters:

	kwargs – Keyword arguments that are forwarded to the superclass.

dingo.gw.inference.inference_pipeline module

	
dingo.gw.inference.inference_pipeline.analyze_event()

	

	
dingo.gw.inference.inference_pipeline.get_event_data(event, args, model, ref=None)

	

	
dingo.gw.inference.inference_pipeline.parse_args()

	

	
dingo.gw.inference.inference_pipeline.prepare_log_prob(sampler, num_samples: int, nde_settings: dict, batch_size: int | None = None, threshold_std: float | None = inf, remove_init_outliers: float | None = 0.0, low_latency_label: str | None = None, outdir: str | None = None)

	Prepare gnpe sampling with log_prob. This is required, since in its vanilla
form gnpe does not provide the density for its samples.

Specifically, we train an unconditional neural density estimator (nde) for the
gnpe proxies. This requires running the gnpe sampler till convergence, and
extracting the gnpe proxies after the final gnpe iteration. The nde is trained
to match the distribution over gnpe proxies, which provides a way of rapidly
sampling (converged!) gnpe proxies and evaluating the log_prob.

After this preparation step, self.run_sampler can leverage
self.gnpe_proxy_sampler (which is based on the aforementioned trained nde) to
sample gnpe proxies, such that one gnpe iteration is sufficient. The
log_prob of
the samples in the joint space (inference parameters + gnpe proxies) is then
simply given by the sum of the corresponding log_probs (from self.model and
self.gnpe_proxy_sampler.model).

	Parameters:

	
	num_samples (int) – number of samples for training of nde

	batch_size (int = None) – batch size for sampler

	threshold_std (float = np.inf) – gnpe proxies deviating by more then threshold_std standard deviations from
the proxy mean (along any axis) are discarded.

	low_latency_label (str = None) – File label for low latency samples (= samples used for training nde).
If None, these samples are not saved.

	outdir (str = None) – Directory in which low latency samples are saved. Needs to be set if
low_latency_label is not None.

dingo.gw.inference.visualization module

	
dingo.gw.inference.visualization.generate_cornerplot(*sample_sets, filename=None)

	

	
dingo.gw.inference.visualization.load_ref_samples(ref_samples_file, drop_geocent_time=True)

	

Module contents

 dingo.gw.noise package

dingo.gw.noise package

Subpackages

	dingo.gw.noise.synthetic package
	Submodules

	dingo.gw.noise.synthetic.asd_parameterization module
	curve_fit()

	fit_broadband_noise()

	fit_spectral()

	parameterize_asd_dataset()

	parameterize_asds_parallel()

	parameterize_single_psd()

	dingo.gw.noise.synthetic.asd_sampling module
	KDE
	KDE.fit()

	KDE.sample()

	get_rescaling_params()

	dingo.gw.noise.synthetic.generate_dataset module
	generate_dataset()

	main()

	parse_args()

	dingo.gw.noise.synthetic.utils module
	get_index_for_elem()

	lorentzian_eval()

	reconstruct_psds_from_parameters()

	Module contents

Submodules

dingo.gw.noise.asd_dataset module

	
class dingo.gw.noise.asd_dataset.ASDDataset(file_name=None, dictionary=None, ifos=None, precision=None, domain_update=None)

	Bases: DingoDataset

Dataset of amplitude spectral densities (ASDs). The ASDs are typically
used for whitening strain data, and additionally passed as context to the
neural density estimator.

	Parameters:

	
	file_name (str) – HDF5 file containing a dataset

	dictionary (dict) – Contains settings and data entries. The dictionary keys should be
‘settings’, ‘asds’, and ‘gps_times’.

	ifos (List[str]) – List of detectors used for dataset, e.g. [‘H1’, ‘L1’].
If not set, all available ones in the dataset are used.

	precision (str ('single', 'double')) – If provided, changes precision of loaded dataset.

	domain_update (dict) – If provided, update domain from existing domain using new settings.

	
dataset_type = 'asd_dataset'

	

	
property gps_info

	Min/Max GPS time for each detector.

	
property length_info

	The number of asd samples per detector.

	
sample_random_asds()

	Sample a random asd for each detector.
:rtype: Dict with a random asd from the dataset for each detector.

	
update_domain(domain_update)

	Update the domain based on new configuration. Also adjust data arrays to match
the new domain.

The ASD dataset provides ASDs in a particular domain. In Frequency domain,
this is [0, domain._f_max]. In practice one may want to train a network based on
slightly different domain settings, which corresponds to truncating the likelihood
integral.

This method provides functionality for that. It truncates the data below a
new f_max, and sets the ASD below f_min to a large but finite value.

	Parameters:

	domain_update (dict) – Settings dictionary. Must contain a subset of the keys contained in
domain_dict.

dingo.gw.noise.asd_estimation module

	
dingo.gw.noise.asd_estimation.download_and_estimate_cli()

	Command-line function to download strain data and estimate PSDs based on the data. Used for
parallelized ASD dataset generation.

	
dingo.gw.noise.asd_estimation.download_and_estimate_psds(data_dir: str, settings: dict, time_segments: dict, verbose=False)

	Downloads strain data for the specified time segments and estimates PSDs based on these

	Parameters:

	
	data_dir (str) – Path to the directory where the PSD dataset will be stored

	settings (dict) – Settings that determine the segments

	time_segments (dict) – specifying the time segments used for downloading the data

	verbose (bool) – optional parameter determining if progress should be printed

	Return type:

	A dictionary containing the paths to the dataset files

dingo.gw.noise.generate_dataset module

	
dingo.gw.noise.generate_dataset.generate_dataset()

	Creates and saves an ASD dataset

	
dingo.gw.noise.generate_dataset.parse_args()

	

dingo.gw.noise.generate_dataset_dag module

	
dingo.gw.noise.generate_dataset_dag.create_args_string(args_dict: Dict)

	Generate argument string from dictionary of argument names and arguments.

	
dingo.gw.noise.generate_dataset_dag.create_dag(data_dir, settings_file, time_segments, out_name)

	Create a Condor DAG to (a) download, estimate,
individual PSDs and (b) merge them into one dataset

	Parameters:

	
	data_dir (str) – Path to the directory where the PSD dataset will be stored

	settings_file (str) – Settings : Path to settings file relevant for PSD generation

	time_segments (dict) – contains all time segments used for estimating PSDs

	out_name (str) – path where the resulting ASD dataset should be stored

	Return type:

	Condor DAG

	
dingo.gw.noise.generate_dataset_dag.split_time_segments(time_segments, condor_dir, num_jobs)

	Split up all time segments used for estimating PSDs into num_jobs-many
segments and save them into a condor directory

	Parameters:

	
	time_segments (dict) – contains all time segments used for estimating PSDs

	condor_dir (str) – path to a directory where condr-related files are stored

	num_jobs (int) – number of jobs that should be used per detector to parallelize the PSD estimation

	Return type:

	List of paths where the files including the subsets of all time segments are stored

dingo.gw.noise.utils module

	
dingo.gw.noise.utils.CATALOGS = ['GWTC-1-confident', 'GWTC-2.1-confident', 'GWTC-3-confident']

	Contains links for PSD segment lists with quality label BURST_CAT2 from the Gravitational Wave Open Science Center.
Some events are split up into multiple chunks such that there are multiple URLs for one observing run

	
dingo.gw.noise.utils.get_event_gps_times()

	

	
dingo.gw.noise.utils.get_time_segments(settings)

	Creates a dictionary storing time segments used for estimating PSDs
:param settings: Settings that determine the segments
:type settings: dict

	Return type:

	Dictionary containing the time segments for each detector

	
dingo.gw.noise.utils.merge_datasets(asd_dataset_list)

	Merges a list of asd datasets into ont
:param asd_dataset_list:
:type asd_dataset_list: List of ASDDatasets to be merged

	Return type:

	A single combined ASDDataset object

	
dingo.gw.noise.utils.merge_datasets_cli()

	Command-line function to combine a collection of datasets into one. Used for
parallelized ASD dataset generation.

	
dingo.gw.noise.utils.psd_data_path(data_dir, run, detector)

	Return the directory where the PSD data is to be stored
:param data_dir: Path to the directory where the PSD dataset will be stored
:type data_dir: str
:param run: Observing run that is used for the PSD dataset generation
:type run: str
:param detector: Detector that is used for the PSD dataset generation
:type detector: str

	Return type:

	the path where the data is stored

Module contents

 dingo.gw.noise.synthetic package

dingo.gw.noise.synthetic package

Submodules

dingo.gw.noise.synthetic.asd_parameterization module

	
dingo.gw.noise.synthetic.asd_parameterization.curve_fit(data, std, delta_f=None)

	Fit a Lorentzian to the PSD.

	Parameters:

	
	data (dict) – Dictionary containing the PSD, broadband noise, and frequency grid.

	std (float) – Standard deviation of the Gaussian noise.

	delta_f (float) – Truncation parameter for Lorentzians. Set to None if non-positive value is passed.

	
dingo.gw.noise.synthetic.asd_parameterization.fit_broadband_noise(domain, psd, num_spline_positions, sigma, f_min=20)

	Fit a spline to the broadband noise of a PSD.

	Parameters:

	
	domain (Domain) – Domain object containing the frequency grid.

	psd (array_like) – PSD to be parameterized.

	num_spline_positions (int) – Number of spline positions.

	sigma (float) – Standard deviation of the Gaussian noise used for the spline fit.

	f_min (float, optional) – position of the first node for the spline fi

	
dingo.gw.noise.synthetic.asd_parameterization.fit_spectral(frequencies, psd, broadband_noise, num_spectral_segments, sigma, delta_f)

	Fit Lorentzians to the spectral features of a PSD.

	Parameters:

	
	frequencies (array_like) – Frequency grid.

	psd (array_like) – PSD to be parameterized.

	broadband_noise (array_like) – Broadband noise of the PSD.

	num_spectral_segments (int) – Number of spectral segments.

	sigma (float) – Standard deviation of the Gaussian noise used for the spline fit.

	delta_f (float) – Truncation parameter for Lorentzians. Set to None if non-positive value is passed.

	
dingo.gw.noise.synthetic.asd_parameterization.parameterize_asd_dataset(real_dataset, parameterization_settings, num_processes, verbose)

	Parameterize a dataset of ASDs using a spline fit to the broadband noise and Lorentzians for the spectral features.

	Parameters:

	
	real_dataset (ASDDataset) – Dataset containing the ASDs to be parameterized.

	parameterization_settings (dict) – Dictionary containing the settings for the parameterization.

	num_processes (int) – Number of processes to use for parallelization.

	verbose (bool) – If True, print progress bars.

	
dingo.gw.noise.synthetic.asd_parameterization.parameterize_asds_parallel(asds, domain, parameterization_settings, pool=None, verbose=False)

	Helper function to be called for parallel ASD parameterization.

	Parameters:

	
	asds (array_like) – Array containing the ASDs to be parameterized.

	domain (Domain) – Domain object containing the frequency grid.

	parameterization_settings (dict) – Dictionary containing the settings for the parameterization.

	pool (Pool, optional) – Pool object for parallelization. If None, the function is not parallelized.

	verbose (bool) – If True, print progress bars.

	
dingo.gw.noise.synthetic.asd_parameterization.parameterize_single_psd(real_psd, domain, parameterization_settings)

	Parameterize a single ASD using a spline fit to the broadband noise and Lorentzians for the spectral features.

	Parameters:

	
	real_psd (array_like) – PSD to be parameterized.

	domain (Domain) – Domain object containing the frequency grid.

	parameterization_settings (dict) – Dictionary containing the settings for the parameterization.

dingo.gw.noise.synthetic.asd_sampling module

	
class dingo.gw.noise.synthetic.asd_sampling.KDE(parameter_dict, sampling_settings)

	Bases: object

Kernel Density Estimation (KDE) class for sampling ASDs.

	Parameters:

	
	parameter_dict (dict) – Dictionary containing the parameters of the ASDs used for fitting the synthetic distribution.

	sampling_settings (dict) – Dictionary containing the settings for the sampling.

	
fit(weights=None)

	Fit the KDEs to the parameters saved in ‘self.parameter_dict’.
:param weights: Weights for the KDEs. If None, all weights are set to 1.
:type weights: array_like, optional

	
sample(num_samples, rescaling_ys=None)

	
Sample a synthetic ASD dataset from the fitted KDEs

Parameters:
num_samples (int): Number of samples to draw.
rescaling_ys (dict): Optional dictionary of spline y-values used for rescaling the base noise.

	
dingo.gw.noise.synthetic.asd_sampling.get_rescaling_params(filenames, parameterization_settings)

	Get the parameters of the ASDs that are used for rescaling.
:param filenames: Dictionary containing the paths to the ASD files.
:type filenames: dict
:param parameterization_settings: Dictionary containing the settings for the parameterization.
:type parameterization_settings: dict

dingo.gw.noise.synthetic.generate_dataset module

	
dingo.gw.noise.synthetic.generate_dataset.generate_dataset(real_dataset, settings: Dict, num_samples, num_processes: int, verbose: bool)

	Generate a synthetic ASD dataset from an existing dataset of real ASDs.

	Parameters:

	
	real_dataset (ASDDataset) – Existing dataset of real ASDs.

	settings (dict) – Dictionary containing the settings for the parameterization and sampling.

	num_processes (int) – Number of processes to use in pool for parallel parameterization.

	verbose (bool) – Whether to print progress information.

	
dingo.gw.noise.synthetic.generate_dataset.main()

	

	
dingo.gw.noise.synthetic.generate_dataset.parse_args()

	

dingo.gw.noise.synthetic.utils module

	
dingo.gw.noise.synthetic.utils.get_index_for_elem(arr, elem)

	

	
dingo.gw.noise.synthetic.utils.lorentzian_eval(x, f0, A, Q, delta_f=None)

	Evaluates a Lorentzian function at the given frequencies.
:param x: Frequencies at which the Lorentzian is evaluated.
:type x: array_like
:param f0: Center frequency of the Lorentzian.
:type f0: float
:param A: Amplitude of the Lorentzian.
:type A: float
:param Q: Parameter determining the width of the Lorentzian
:type Q: float
:param delta_f: If given, the Lorentzian is truncated
:type delta_f: float, optional

	Return type:

	array_like

	
dingo.gw.noise.synthetic.utils.reconstruct_psds_from_parameters(parameters_dict, domain, parameterization_settings)

	Reconstructs the PSDs from the parameters.
:param parameters_dict: Dictionary containing the parameters of the PSDs.
:type parameters_dict: dict
:param domain: Domain object containing the frequencies at which the PSDs are evaluated.
:type domain: dingo.gw.noise.domain.Domain
:param parameterization_settings: Dictionary containing the settings for the parameterization.
:type parameterization_settings: dict

	Return type:

	array_like

Module contents

 dingo.gw.training package

dingo.gw.training package

Submodules

dingo.gw.training.train_builders module

	
dingo.gw.training.train_builders.build_dataset(data_settings)

	Build a dataset based on a settings dictionary. This should contain the path of
a saved waveform dataset.

This function also truncates the dataset as necessary.

	Parameters:

	data_settings (dict) –

	Return type:

	WaveformDataset

	
dingo.gw.training.train_builders.build_svd_for_embedding_network(wfd: WaveformDataset, data_settings: dict, asd_dataset_path: str, size: int, num_training_samples: int, num_validation_samples: int, num_workers: int = 0, batch_size: int = 1000, out_dir=None)

	Construct SVD matrices V based on clean waveforms in each interferometer. These
will be used to seed the weights of the initial projection part of the embedding
network.

It first generates a number of training waveforms, and then produces the SVD.

	Parameters:

	
	wfd (WaveformDataset) –

	data_settings (dict) –

	asd_dataset_path (str) – Training waveforms will be whitened with respect to these ASDs.

	size (int) – Number of basis elements to include in the SVD projection.

	num_training_samples (int) –

	num_validation_samples (int) –

	num_workers (int) –

	batch_size (int) –

	out_dir (str) – SVD performance diagnostics are saved here.

	Returns:

	The V matrices for each interferometer. They are ordered as in data_settings[
‘detectors’].

	Return type:

	list of numpy arrays

	
dingo.gw.training.train_builders.set_train_transforms(wfd, data_settings, asd_dataset_path, omit_transforms=None)

	Set the transform attribute of a waveform dataset based on a settings dictionary.
The transform takes waveform polarizations, samples random extrinsic parameters,
projects to detectors, adds noise, and formats the data for input to the neural
network. It also implements optional GNPE transformations.

Note that the WaveformDataset is modified in-place, so this function returns nothing.

	Parameters:

	
	wfd (WaveformDataset) –

	data_settings (dict) –

	asd_dataset_path (str) – Path corresponding to the ASD dataset used to generate noise.

	omit_transforms – List of sub-transforms to omit from the full composition.

dingo.gw.training.train_pipeline module

	
dingo.gw.training.train_pipeline.initialize_stage(pm, wfd, stage, num_workers, resume=False)

	
	Initializes training based on PosteriorModel metadata and current stage:
	
	Builds transforms (based on noise settings for current stage);

	Builds DataLoaders;

	At the beginning of a stage (i.e., if not resuming mid-stage), initializes

a new optimizer and scheduler;
* Freezes / unfreezes SVD layer of embedding network

	Parameters:

	
	pm (PosteriorModel) –

	wfd (WaveformDataset) –

	stage (dict) – Settings specific to current stage of training

	num_workers (int) –

	resume (bool) – Whether training is resuming mid-stage. This controls whether the optimizer and
scheduler should be re-initialized based on contents of stage dict.

	Return type:

	(train_loader, test_loader)

	
dingo.gw.training.train_pipeline.parse_args()

	

	
dingo.gw.training.train_pipeline.prepare_training_new(train_settings: dict, train_dir: str, local_settings: dict)

	Based on a settings dictionary, initialize a WaveformDataset and PosteriorModel.

For model type ‘nsf+embedding’ (the only acceptable type at this point) this also
initializes the embedding network projection stage with SVD V matrices based on
clean detector waveforms.

	Parameters:

	
	train_settings (dict) – Settings which ultimately come from train_settings.yaml file.

	train_dir (str) – This is only used to save diagnostics from the SVD.

	local_settings (dict) – Local settings (e.g., num_workers, device)

	Return type:

	(WaveformDataset, PosteriorModel)

	
dingo.gw.training.train_pipeline.prepare_training_resume(checkpoint_name, local_settings, train_dir)

	Loads a PosteriorModel from a checkpoint, as well as the corresponding
WaveformDataset, in order to continue training. It initializes the saved optimizer
and scheduler from the checkpoint.

	Parameters:

	
	checkpoint_name (str) – File name containing the checkpoint (.pt format).

	device (str) – ‘cuda’ or ‘cpu’

	Return type:

	(PosteriorModel, WaveformDataset)

	
dingo.gw.training.train_pipeline.train_local()

	

	
dingo.gw.training.train_pipeline.train_stages(pm, wfd, train_dir, local_settings)

	Train the network, iterating through the sequence of stages. Stages can change
certain settings such as the noise characteristics, optimizer, and scheduler settings.

	Parameters:

	
	pm (PosteriorModel) –

	wfd (WaveformDataset) –

	train_dir (str) – Directory for saving checkpoints and train history.

	local_settings (dict) –

	Returns:

	True if all stages are complete
False otherwise

	Return type:

	bool

dingo.gw.training.train_pipeline_condor module

	
dingo.gw.training.train_pipeline_condor.copy_logfiles(log_dir, epoch, name='info', suffixes=('.err', '.log', '.out'))

	

	
dingo.gw.training.train_pipeline_condor.copyfile(src, dst)

	

	
dingo.gw.training.train_pipeline_condor.create_submission_file(train_dir, condor_settings, filename='submission_file.sub')

	TODO: documentation
:param train_dir:
:param filename:
:return:

	
dingo.gw.training.train_pipeline_condor.train_condor()

	

dingo.gw.training.utils module

	
dingo.gw.training.utils.append_stage()

	

Module contents

 dingo.gw.transforms package

dingo.gw.transforms package

Submodules

dingo.gw.transforms.detector_transforms module

	
class dingo.gw.transforms.detector_transforms.ApplyCalibrationUncertainty(ifo_list, data_domain, calibration_envelope, num_calibration_curves, num_calibration_nodes)

	Bases: object

Expand out a waveform using several detector calibration draws. These multiple
draws are intended to be used for marginalizing over calibration uncertainty.

Detector calibration uncertainty is modeled as described in
https://dcc.ligo.org/LIGO-T1400682/public

Gravitational wave data \(d\) is assumed to be of the form

\[d(f) = h_{obs}(f) + n(f),\]

where \(h_{obs}\) is the observed waveform and \(n\) is the noise. Since the detector
is not perfectly calibrated, the observed waveform is not identical to the true
waveform \(h(f)\). Rather, it is assumed to have corrections of the form

\[h_{obs}(f) = h(f) * (1 + \delta A(f)) * \exp(i \delta \phi(f)),\]

where \(\delta A(f)\) and \(\delta \phi(f)\) are frequency-dependent amplitude and
phase errors. Under the calibration model, these are parametrized with cubic
splines, defined in terms of calibration parameters \(A_i\) and \(\phi_i\), defined
at log-spaced frequency nodes,

\[\begin{split}
\delta A(f) &= \mathrm{spline}(f; {f_i, \delta A_i}), \\
\delta \phi(f) &= \mathrm{spline}(f; {f_i, \delta \phi_i}).
\end{split}\]

The calibration parameters are not known precisely, rather they are assumed to be
normally distributed, with mean 0 and standard deviation determined by the
“calibration envelope”, which varies from event to event.

For each detector waveform, this transform draws a collection of \(N\)
calibration curves \(\{(\delta A^n(f), \delta \phi^n(f))\}_{n=1}^N\) according to a
calibration envelope, and applies them to generate \(N\) observed waveforms \(\{h^n_{
obs}(f)\}\). This is intended to be used for marginalizing over the calibration
uncertainty when evaluating the likelihood for importance sampling.

	Parameters:

	
	ifo_list (InterferometerList) – List of Interferometers present in the analysis.

	data_domain (Domain) – Domain on which data is defined.

	calibration_envelope (dict) – Dictionary of the form {"H1": filepath, "L1": filepath},
where the filepaths are strings pointing to “.txt” files containing
calibration envelopes. The calibration envelope depends on the event analyzed,
and therefore remains fixed for all applications of the transform. The
calibration envelope is used to define the variances \((\sigma_{\delta A_i},
\sigma_{\delta \phi_i})\) of the calibration paramters.

	num_calibration_curves (int) – Number of calibration curves \(N\) to produce and apply to the
waveform. Ultimately, this will translate to the number of samples in the
Monte Carlo estimate of the marginalized likelihood integral.

	num_calibration_nodes (int) – Number of log-spaced frequency nodes \(f_i\) to use in defining the spline.

	
class dingo.gw.transforms.detector_transforms.GetDetectorTimes(ifo_list, ref_time)

	Bases: object

Compute the time shifts in the individual detectors based on the sky
position (ra, dec), the geocent_time and the ref_time.

	
class dingo.gw.transforms.detector_transforms.ProjectOntoDetectors(ifo_list, domain, ref_time)

	Bases: object

Project the GW polarizations onto the detectors in ifo_list. This does
not sample any new parameters, but relies on the parameters provided in
sample[‘extrinsic_parameters’]. Specifically, this transform applies the
following operations:

	Rescale polarizations to account for sampled luminosity distance

	Project polarizations onto the antenna patterns using the ref_time and
the extrinsic parameters (ra, dec, psi)

	Time shift the strains in the individual detectors according to the
times <ifo.name>_time provided in the extrinsic parameters.

	
class dingo.gw.transforms.detector_transforms.TimeShiftStrain(ifo_list, domain)

	Bases: object

Time shift the strains in the individual detectors according to the
times <ifo.name>_time provided in the extrinsic parameters.

	
dingo.gw.transforms.detector_transforms.time_delay_from_geocenter(ifo: Interferometer, ra: float | ndarray | Tensor, dec: float | ndarray | Tensor, time: float)

	Calculate time delay between ifo and geocenter. Identical to method
ifo.time_delay_from_geocenter(ra, dec, time), but the present implementation allows
for batched computation, i.e., it also accepts arrays and tensors for ra and dec.

Implementation analogous to bilby-cython implementation
https://git.ligo.org/colm.talbot/bilby-cython/-/blob/main/bilby_cython/geometry.pyx,
which is in turn based on XLALArrivaTimeDiff in TimeDelay.c.

	Parameters:

	
	ifo (bilby.gw.detector.interferometer.Interferometer) – bilby interferometer object.

	ra (Union[float, np.array, torch.Tensor]) – Right ascension of the source in radians. Either float, or float array/tensor.

	dec (Union[float, np.array, torch.Tensor]) – Declination of the source in radians. Either float, or float array/tensor.

	time (float) – GPS time in the geocentric frame.

	Returns:

	float

	Return type:

	Time delay between the two detectors in the geocentric frame

dingo.gw.transforms.general_transforms module

	
class dingo.gw.transforms.general_transforms.UnpackDict(selected_keys)

	Bases: object

Unpacks the dictionary to prepare it for final output of the dataloader.
Only returns elements specified in selected_keys.

dingo.gw.transforms.gnpe_transforms module

	
class dingo.gw.transforms.gnpe_transforms.GNPEBase(kernel_dict, operators)

	Bases: ABC

A base class for Group Equivariant Neural Posterior Estimation [1].

This implements GNPE for approximate equivariances. For exact equivariances,
additional processing should be implemented within a subclass.

[1]: https://arxiv.org/abs/2111.13139

	
inverse(a, k)

	

	
multiply(a, b, k)

	

	
perturb(g, k)

	Generate proxy variables based on initial parameter values.

	Parameters:

	
	g (Union[np.float64, float, torch.Tensor]) – Initial parameter values

	k (str) – Parameter name. This is used to identify the group binary operator.

	Return type:

	Proxy variables in the same format as g.

	
sample_proxies(input_parameters)

	Given input parameters, perturbs based on the
kernel to produce “proxy” (“hatted”) parameters, i.e., samples

hat g ~ p(hat g | g).

Typically the GNPE NDE will be conditioned on hat g. Furthermore, these proxy
parameters will be used to transform the data to simplify it.

Parameters:

	input_parametersdict
	Initial parameter values to be perturbed. dict values can be either floats
(for training) or torch Tensors (for inference).

	rtype:

	A dict of proxy parameters.

	
class dingo.gw.transforms.gnpe_transforms.GNPECoalescenceTimes(ifo_list, kernel, exact_global_equivariance=True, inference=False)

	Bases: GNPEBase

GNPE [1] Transformation for detector coalescence times.

For each of the detector coalescence times, a proxy is generated by adding a
perturbation epsilon from the GNPE kernel to the true detector time. This proxy is
subtracted from the detector time, such that the overall time shift only amounts to
-epsilon in training. This standardizes the input data to the inference network,
since the applied time shifts are always restricted to the range of the kernel.

To preserve information at inference time, conditioning of the inference network on
the proxies is required. To that end, the proxies are stored in sample[
‘gnpe_proxies’].

We can enforce an exact equivariance under global time translations, by subtracting
one proxy (by convention: the first one, usually for H1 ifo) from all other
proxies, and from the geocent time, see [1]. This is enabled with the flag
exact_global_equivariance.

Note that this transform does not modify the data itself. It only determines the
amount by which to time-shift the data.

[1]: arxiv.org/abs/2111.13139

	Parameters:

	
	ifo_list (bilby.gw.detector.InterferometerList) – List of interferometers.

	kernel (str) – Defines a Bilby prior, to be used for all interferometers.

	exact_global_equivariance (bool = True) – Whether to impose the exact global time translation symmetry.

	inference (bool = False) – Whether to use inference or training mode.

dingo.gw.transforms.inference_transforms module

	
class dingo.gw.transforms.inference_transforms.CopyToExtrinsicParameters(*parameter_list)

	Bases: object

Copy parameters specified in self.parameter_list from sample[“parameters”] to
sample[“extrinsic_parameters”].

	
class dingo.gw.transforms.inference_transforms.ExpandStrain(num_samples)

	Bases: object

Expand the waveform of sample by adding a batch axis and copying the waveform
num_samples times along this new axis. This is useful for generating num_samples
samples at inference time.

	
class dingo.gw.transforms.inference_transforms.PostCorrectGeocentTime(inverse=False)

	Bases: object

Post correction for geocent time: add GNPE proxy (only necessary if exact
equivariance is enforced)

	
class dingo.gw.transforms.inference_transforms.ResetSample(extrinsic_parameters_keys=None)

	Bases: object

	Resets sample:
	
	waveform was potentially modified by gnpe transforms, so reset to waveform_

	optionally remove all non-required extrinsic parameters

	
class dingo.gw.transforms.inference_transforms.ToTorch(device='cpu')

	Bases: object

Convert all numpy arrays sample to torch tensors and push them to the specified
device. All items of sample that are not numpy arrays (e.g., dicts of arrays)
remain unchanged.

dingo.gw.transforms.noise_transforms module

	
class dingo.gw.transforms.noise_transforms.AddWhiteNoiseComplex

	Bases: object

Adds white noise with a standard deviation determined by self.scale to the
complex strain data.

	
class dingo.gw.transforms.noise_transforms.RepackageStrainsAndASDS(ifos, first_index=0)

	Bases: object

Repackage the strains and the asds into an [num_ifos, 3, num_bins]
dimensional tensor. Order of ifos is provided by self.ifos. By
convention, [:,i,:] is used for:

i = 0: strain.real
i = 1: strain.imag
i = 2: 1 / (asd * 1e23)

	
class dingo.gw.transforms.noise_transforms.SampleNoiseASD(asd_dataset)

	Bases: object

Sample a random asds for each detector and add them to sample[‘asds’].

	
class dingo.gw.transforms.noise_transforms.WhitenAndScaleStrain(scale_factor)

	Bases: object

Whiten the strain data by dividing w.r.t. the corresponding asds,
and scale it with 1/scale_factor.

In uniform frequency domain the scale factor should be
np.sqrt(window_factor) / np.sqrt(4.0 * delta_f).
It has two purposes:

(*) the denominator accounts for frequency binning
(*) dividing by window factor accounts for windowing of strain data

	
class dingo.gw.transforms.noise_transforms.WhitenFixedASD(domain: FrequencyDomain, asd_file: str | None = None, inverse: bool = False, precision=None)

	Bases: object

Whiten frequency-series data according to an ASD specified in a file. This uses the
ASD files contained in Bilby.

	Parameters:

	
	domain (FrequencyDomain) – ASD is interpolated to the associated frequency grid.

	asd_file (str) – Name of the ASD file. If None, use the aligo ASD.
[Default: None]

	inverse (bool) – Whether to apply the inverse whitening transform, to un-whiten data.
[Default: False]

	precision (str ("single", "double")) – If not None, sets precision of ASD to specified precision.

	
class dingo.gw.transforms.noise_transforms.WhitenStrain

	Bases: object

Whiten the strain data by dividing w.r.t. the corresponding asds.

dingo.gw.transforms.parameter_transforms module

	
class dingo.gw.transforms.parameter_transforms.SampleExtrinsicParameters(extrinsic_prior_dict)

	Bases: object

Sample extrinsic parameters and add them to sample in a separate dictionary.

	
property reproduction_dict

	

	
class dingo.gw.transforms.parameter_transforms.SelectStandardizeRepackageParameters(parameters_dict, standardization_dict, inverse=False, as_type=None, device='cpu')

	Bases: object

This transformation selects the parameters in standardization_dict,
normalizes them by setting p = (p - mean) / std, and repackages the
selected parameters to a numpy array.

	as_type: str = None
	only applies, if self.inverse == True
* if None, data type is kept
* if ‘dict’, dict with
* if ‘pandas’, use pandas.DataFrame

	
class dingo.gw.transforms.parameter_transforms.StandardizeParameters(mu, std)

	Bases: object

Standardize parameters according to the transform (x - mu) / std.

Initialize the standardization transform with means
and standard deviations for each parameter

	Parameters:

	
	mu (Dict[str, float]) – The (estimated) means

	std (Dict[str, float]) – The (estimated) standard deviations

	
inverse(samples)

	De-standardize the parameter array according to the
specified means and standard deviations.

	Parameters:

	
	samples (Dict[Dict, Dict]) – A nested dictionary with keys ‘parameters’, ‘waveform’,
‘noise_summary’.

	mu (Only parameters included in) –

	transformed. (std get) –

Module contents

 dingo.gw.waveform_generator package

dingo.gw.waveform_generator package

Submodules

dingo.gw.waveform_generator.frame_utils module

These functions are used for transforming between J and L0 frames.

	
dingo.gw.waveform_generator.frame_utils.convert_J_to_L0_frame(hlm_J, p, wfg, spin_conversion_phase=None)

	

	
dingo.gw.waveform_generator.frame_utils.get_JL0_euler_angles(p, wfg, spin_conversion_phase=None)

	

	
dingo.gw.waveform_generator.frame_utils.rotate_y(angle, vx, vy, vz)

	

	
dingo.gw.waveform_generator.frame_utils.rotate_z(angle, vx, vy, vz)

	

dingo.gw.waveform_generator.waveform_generator module

	
class dingo.gw.waveform_generator.waveform_generator.NewInterfaceWaveformGenerator(**kwargs)

	Bases: WaveformGenerator

Generate polarizations using GWSignal routines in the specified domain for a
single GW coalescence given a set of waveform parameters.

	Parameters:

	
	approximant (str) – Waveform “approximant” string understood by lalsimulation
This is defines which waveform model is used.

	domain (Domain) – Domain object that specifies on which physical domain the
waveform polarizations will be generated, e.g. Fourier
domain, time domain.

	f_ref (float) – Reference frequency for the waveforms

	f_start (float) – Starting frequency for waveform generation. This is optional, and if not
included, the starting frequency will be set to f_min. This exists so that
EOB waveforms can be generated starting from a lower frequency than f_min.

	mode_list (List[Tuple]) – A list of waveform (ell, m) modes to include when generating
the polarizations.

	spin_conversion_phase (float = None) – Value for phiRef when computing cartesian spins from bilby spins via
bilby_to_lalsimulation_spins. The common convention is to use the value of
the phase parameter here, which is also used in the spherical harmonics
when combining the different modes. If spin_conversion_phase = None,
this default behavior is adapted.
For dingo, this convention for the phase parameter makes it impossible to
treat the phase as an extrinsic parameter, since we can only account for
the change of phase in the spherical harmonics when changing the phase (in
order to also change the cartesian spins – specifically, to rotate the spins
by phase in the sx-sy plane – one would need to recompute the modes,
which is expensive).
By setting spin_conversion_phase != None, we impose the convention to always
use phase = spin_conversion_phase when computing the cartesian spins.

	
generate_FD_modes_LO(parameters)

	Generate FD modes in the L0 frame.

	Parameters:

	parameters (dict) – Dictionary of parameters for the waveform.
For details see see self.generate_hplus_hcross.

	Returns:

	
	hlm_fd (dict) – Dictionary with (l,m) as keys and the corresponding FD modes in lal format as
values.

	iota (float)

	
generate_FD_waveform(parameters_gwsignal: Dict) → Dict[str, ndarray]

	Generate Fourier domain GW polarizations (h_plus, h_cross).

	Parameters:

	parameters_lal – A tuple of parameters for the lalsimulation waveform generator

	Returns:

	A dictionary of generated waveform polarizations

	Return type:

	pol_dict

	
generate_TD_modes_L0(parameters)

	Generate TD modes in the L0 frame.

	Parameters:

	parameters (dict) – Dictionary of parameters for the waveform.
For details see see self.generate_hplus_hcross.

	Returns:

	
	hlm_td (dict) – Dictionary with (l,m) as keys and the corresponding TD modes in lal format as
values.

	iota (float)

	
generate_TD_modes_L0_conditioned_extra_time(parameters)

	Generate TD modes in the L0 frame applying a conditioning routine which mimics the behaviour of the standard
LALSimulation conditioning
(https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_inspiral_generator_conditioning_8c.html#ac78b5fcdabf8922a3ac479da20185c85)

Essentially, a new starting frequency is computed to have some extra cycles that will be tapered. Some extra
buffer time is also added to ensure that the waveform at the requested starting frequency is not modified,
while still having a tapered timeseries suited for clean FFT.

	Parameters:

	parameters (dict) – Dictionary of parameters for the waveform.
For details see self.generate_hplus_hcross.

	Returns:

	
	hlm_td (dict) – Dictionary with (l,m) as keys and the corresponding TD modes in lal format as
values.

	iota (float)

	
generate_TD_waveform(parameters_gwsignal: Dict) → Dict[str, ndarray]

	Generate time domain GW polarizations (h_plus, h_cross)

	Parameters:

	parameters_gwsignal – A dict of parameters for the gwsignal waveform generator

	Returns:

	A dictionary of generated waveform polarizations

	Return type:

	pol_dict

	
generate_hplus_hcross_m(parameters: Dict[str, float]) → Dict[tuple, Dict[str, ndarray]]

	Generate GW polarizations (h_plus, h_cross), separated into contributions from
the different modes. This method is identical to self.generate_hplus_hcross,
except that it generates the individual contributions of the modes to the
polarizations and sorts these according to their transformation behavior (see
below), instead of returning the overall sum.

This is useful in order to treat the phase as an extrinsic parameter. Instead of
{“h_plus”: hp, “h_cross”: hc}, this method returns a dict in the form of
{m: {“h_plus”: hp_m, “h_cross”: hc_m} for m in [-l_max,…,0,…,l_max]}. Each
key m contains the contribution to the polarization that transforms according
to exp(-1j * m * phase) under phase transformations (due to the spherical
harmonics).

	Note:
	
	pol_m[m] contains contributions of the m modes and and the -m modes.
This is because the frequency domain (FD) modes have a positive frequency
part which transforms as exp(-1j * m * phase), while the negative
frequency part transforms as exp(+1j * m * phase). Typically, one of these
dominates [e.g., the (2,2) mode is dominated by the negative frequency
part and the (-2,2) mode is dominated by the positive frequency part]
such that the sum of (l,|m|) and (l,-|m|) modes transforms approximately as
exp(1j * |m| * phase), which is e.g. used for phase marginalization in
bilby/lalinference. However, this is not exact. In this method we account
for this effect, such that each contribution pol_m[m] transforms
exactly as exp(-1j * m * phase).

	Phase shifts contribute in two ways: Firstly via the spherical harmonics,
which we account for with the exp(-1j * m * phase) transformation.
Secondly, the phase determines how the PE spins transform to cartesian
spins, by rotating (sx,sy) by phase. This is not accounted for in this
function. Instead, the phase for computing the cartesian spins is fixed
to self.spin_conversion_phase (if not None). This effectively changes the
PE parameters {phi_jl, phi_12} to parameters {phi_jl_prime, phi_12_prime}.
For parameter estimation, a postprocessing operation can be applied to
account for this, {phi_jl_prime, phi_12_prime} -> {phi_jl, phi_12}.
See also documentation of __init__ method for more information on
self.spin_conversion_phase.

Differences to self.generate_hplus_hcross:
- We don’t catch errors yet TODO
- We don’t apply transforms yet TODO

	Parameters:

	parameters (dict) – Dictionary of parameters for the waveform.
For details see see self.generate_hplus_hcross.

	Returns:

	pol_m – Dictionary with contributions to h_plus and h_cross, sorted by their
transformation behaviour under phase shifts:
{m: {“h_plus”: hp_m, “h_cross”: hc_m} for m in [-l_max,…,0,…,l_max]}
Each contribution h_m transforms as exp(-1j * m * phase) under phase shifts
(for fixed self.spin_conversion_phase, see above).

	Return type:

	dict

	
dingo.gw.waveform_generator.waveform_generator.SEOBNRv4PHM_maximum_starting_frequency(total_mass: float, fudge: float = 0.99) → float

	Given a total mass return the largest possible starting frequency allowed
for SEOBNRv4PHM and similar effective-one-body models.

The intended use for this function is at the stage of designing
a data set: after choosing a mass prior one can use it to figure out
which prior samples would run into an issue when generating an EOB waveform,
and tweak the parameters to reduce the number of failing configurations.

	Parameters:

	
	total_mass – Total mass in units of solar masses

	fudge – A fudge factor

	Returns:

	The largest possible starting frequency in Hz

	Return type:

	f_max_Hz

	
class dingo.gw.waveform_generator.waveform_generator.WaveformGenerator(approximant: str, domain: Domain, f_ref: float, f_start: float | None = None, mode_list: List[Tuple] | None = None, transform=None, spin_conversion_phase=None, **kwargs)

	Bases: object

Generate polarizations using LALSimulation routines in the specified domain for a
single GW coalescence given a set of waveform parameters.

	Parameters:

	
	approximant (str) – Waveform “approximant” string understood by lalsimulation
This is defines which waveform model is used.

	domain (Domain) – Domain object that specifies on which physical domain the
waveform polarizations will be generated, e.g. Fourier
domain, time domain.

	f_ref (float) – Reference frequency for the waveforms

	f_start (float) – Starting frequency for waveform generation. This is optional, and if not
included, the starting frequency will be set to f_min. This exists so that
EOB waveforms can be generated starting from a lower frequency than f_min.

	mode_list (List[Tuple]) – A list of waveform (ell, m) modes to include when generating
the polarizations.

	spin_conversion_phase (float = None) – Value for phiRef when computing cartesian spins from bilby spins via
bilby_to_lalsimulation_spins. The common convention is to use the value of
the phase parameter here, which is also used in the spherical harmonics
when combining the different modes. If spin_conversion_phase = None,
this default behavior is adapted.
For dingo, this convention for the phase parameter makes it impossible to
treat the phase as an extrinsic parameter, since we can only account for
the change of phase in the spherical harmonics when changing the phase (in
order to also change the cartesian spins – specifically, to rotate the spins
by phase in the sx-sy plane – one would need to recompute the modes,
which is expensive).
By setting spin_conversion_phase != None, we impose the convention to always
use phase = spin_conversion_phase when computing the cartesian spins.

	
generate_FD_modes_LO(parameters)

	Generate FD modes in the L0 frame.

	Parameters:

	parameters (dict) – Dictionary of parameters for the waveform.
For details see see self.generate_hplus_hcross.

	Returns:

	
	hlm_fd (dict) – Dictionary with (l,m) as keys and the corresponding FD modes in lal format as
values.

	iota (float)

	
generate_FD_waveform(parameters_lal: Tuple) → Dict[str, ndarray]

	Generate Fourier domain GW polarizations (h_plus, h_cross).

	Parameters:

	parameters_lal – A tuple of parameters for the lalsimulation waveform generator

	Returns:

	A dictionary of generated waveform polarizations

	Return type:

	pol_dict

	
generate_TD_modes_L0(parameters)

	Generate TD modes in the L0 frame.

	Parameters:

	parameters (dict) – Dictionary of parameters for the waveform.
For details see see self.generate_hplus_hcross.

	Returns:

	
	hlm_td (dict) – Dictionary with (l,m) as keys and the corresponding TD modes in lal format as
values.

	iota (float)

	
generate_TD_waveform(parameters_lal: Tuple) → Dict[str, ndarray]

	Generate time domain GW polarizations (h_plus, h_cross)

	Parameters:

	parameters_lal – A tuple of parameters for the lalsimulation waveform generator

	Returns:

	A dictionary of generated waveform polarizations

	Return type:

	pol_dict

	
generate_hplus_hcross(parameters: Dict[str, float], catch_waveform_errors=True) → Dict[str, ndarray]

	Generate GW polarizations (h_plus, h_cross).

If the generation of the lalsimulation waveform fails with an
“Input domain error”, we return NaN polarizations.

Use the domain, approximant, and mode_list specified in the constructor
along with the waveform parameters to generate the waveform polarizations.

	Parameters:

	
	parameters (Dict[str, float]) – A dictionary of parameter names and scalar values.
The parameter dictionary must include the following keys.
For masses, spins, and distance there are multiple options.

	Mass: (mass_1, mass_2) or a pair of quantities from
	((chirp_mass, total_mass), (mass_ratio, symmetric_mass_ratio))

	Spin:
	(a_1, a_2, tilt_1, tilt_2, phi_12, phi_jl) if precessing binary or
(chi_1, chi_2) if the binary has aligned spins

Reference frequency: f_ref at which spin vectors are defined
Extrinsic:

Distance: one of (luminosity_distance, redshift, comoving_distance)
Inclination: theta_jn
Reference phase: phase
Geocentric time: geocent_time (GPS time)

	The following parameters are not required:
	Sky location: ra, dec,
Polarization angle: psi

	Units:
	Masses should be given in units of solar masses.
Distance should be given in megaparsecs (Mpc).
Frequencies should be given in Hz and time in seconds.
Spins should be dimensionless.
Angles should be in radians.

	catch_waveform_errors (bool) – Whether to catch lalsimulation errors

	Returns:

	A dictionary of generated waveform polarizations

	Return type:

	wf_dict

	
generate_hplus_hcross_m(parameters: Dict[str, float]) → Dict[tuple, Dict[str, ndarray]]

	Generate GW polarizations (h_plus, h_cross), separated into contributions from
the different modes. This method is identical to self.generate_hplus_hcross,
except that it generates the individual contributions of the modes to the
polarizations and sorts these according to their transformation behavior (see
below), instead of returning the overall sum.

This is useful in order to treat the phase as an extrinsic parameter. Instead of
{“h_plus”: hp, “h_cross”: hc}, this method returns a dict in the form of
{m: {“h_plus”: hp_m, “h_cross”: hc_m} for m in [-l_max,…,0,…,l_max]}. Each
key m contains the contribution to the polarization that transforms according
to exp(-1j * m * phase) under phase transformations (due to the spherical
harmonics).

	Note:
	
	pol_m[m] contains contributions of the m modes and and the -m modes.
This is because the frequency domain (FD) modes have a positive frequency
part which transforms as exp(-1j * m * phase), while the negative
frequency part transforms as exp(+1j * m * phase). Typically, one of these
dominates [e.g., the (2,2) mode is dominated by the negative frequency
part and the (-2,2) mode is dominated by the positive frequency part]
such that the sum of (l,|m|) and (l,-|m|) modes transforms approximately as
exp(1j * |m| * phase), which is e.g. used for phase marginalization in
bilby/lalinference. However, this is not exact. In this method we account
for this effect, such that each contribution pol_m[m] transforms
exactly as exp(-1j * m * phase).

	Phase shifts contribute in two ways: Firstly via the spherical harmonics,
which we account for with the exp(-1j * m * phase) transformation.
Secondly, the phase determines how the PE spins transform to cartesian
spins, by rotating (sx,sy) by phase. This is not accounted for in this
function. Instead, the phase for computing the cartesian spins is fixed
to self.spin_conversion_phase (if not None). This effectively changes the
PE parameters {phi_jl, phi_12} to parameters {phi_jl_prime, phi_12_prime}.
For parameter estimation, a postprocessing operation can be applied to
account for this, {phi_jl_prime, phi_12_prime} -> {phi_jl, phi_12}.
See also documentation of __init__ method for more information on
self.spin_conversion_phase.

Differences to self.generate_hplus_hcross:
- We don’t catch errors yet TODO
- We don’t apply transforms yet TODO

	Parameters:

	parameters (dict) – Dictionary of parameters for the waveform.
For details see see self.generate_hplus_hcross.

	Returns:

	pol_m – Dictionary with contributions to h_plus and h_cross, sorted by their
transformation behaviour under phase shifts:
{m: {“h_plus”: hp_m, “h_cross”: hc_m} for m in [-l_max,…,0,…,l_max]}
Each contribution h_m transforms as exp(-1j * m * phase) under phase shifts
(for fixed self.spin_conversion_phase, see above).

	Return type:

	dict

	
setup_mode_array(mode_list: List[Tuple]) → Dict

	Define a mode array to select waveform modes
to include in the polarizations from a list of modes.

	Parameters:

	mode_list (a list of (ell, m) modes) –

	Returns:

	A lal parameter dictionary

	Return type:

	lal_params

	
property spin_conversion_phase

	

	
dingo.gw.waveform_generator.waveform_generator.generate_waveforms_parallel(waveform_generator: WaveformGenerator, parameter_samples: DataFrame, pool: Pool | None = None) → Dict[str, ndarray]

	Generate a waveform dataset, optionally in parallel.

	Parameters:

	
	waveform_generator (WaveformGenerator) – A WaveformGenerator instance

	parameter_samples (pd.DataFrame) – Intrinsic parameter samples

	pool (multiprocessing.Pool) – Optional pool of workers for parallel generation

	Returns:

	A dictionary of all generated polarizations stacked together

	Return type:

	polarizations

	
dingo.gw.waveform_generator.waveform_generator.generate_waveforms_task_func(args: Tuple, waveform_generator: WaveformGenerator) → Dict[str, ndarray]

	Picklable wrapper function for parallel waveform generation.

	Parameters:

	
	args – A tuple of (index, pandas.core.series.Series)

	waveform_generator – A WaveformGenerator instance

	Return type:

	The generated waveform polarization dictionary

	
dingo.gw.waveform_generator.waveform_generator.sum_contributions_m(x_m, phase_shift=0.0)

	Sum the contributions over m-components, optionally introducing a phase shift.

dingo.gw.waveform_generator.wfg_utils module

	
dingo.gw.waveform_generator.wfg_utils.get_polarizations_from_fd_modes_m(hlm_fd, iota, phase)

	

	
dingo.gw.waveform_generator.wfg_utils.get_starting_frequency_for_SEOBRNRv5_conditioning(parameters)

	Compute starting frequency needed for having 3 extra cycles for tapering the TD modes.
It returns the needed quantities to apply the standard LALSimulation conditioning routines to the TD modes.

	Parameters:

	parameters (dict) – Dictionary of parameters suited for GWSignal (obtained with NewInterfaceWaveformGenerator._convert_parameters)

	Returns:

	
	f_min (float) – Waveform starting frequency

	f_start (float) – New waveform starting frequency

	extra_time (float) – Extra time to take care of situations where the frequency is close to merger

	original_f_min (float) – Initial waveform starting frequency

	f_isco (float) – ISCO frequency

	
dingo.gw.waveform_generator.wfg_utils.get_tapering_window_for_complex_time_series(h, tapering_flag: int = 1)

	Get window for tapering of a complex time series from the lal backend. This is done
by tapering the time series with lal, and dividing tapered output by untapered
input. lal does not support tapering of complex time series objects, so as a
workaround we taper only the real part of the array and extract the window based on
this.

	Parameters:

	
	h – complex lal time series object

	tapering_flag (int = 1) –
	Flag for tapering. See e.g. lines 2773-2777 in
	https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/
_l_a_l_sim_inspiral_waveform_taper_8c_source.html#l00222

tapering_flag = 1 corresponds to LAL_SIM_INSPIRAL_TAPER_START

	Returns:

	window – Array of length h.data.length, with the window used for tapering.

	Return type:

	np.ndarray

	
dingo.gw.waveform_generator.wfg_utils.linked_list_modes_to_dict_modes(hlm_ll)

	Convert linked list of modes into dictionary with keys (l,m).

	
dingo.gw.waveform_generator.wfg_utils.taper_td_modes_for_SEOBRNRv5_extra_time(h, extra_time, f_min, original_f_min, f_isco)

	Apply standard tapering procedure mimicking LALSimulation routine (https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_inspiral_generator_conditioning_8c.html#ac78b5fcdabf8922a3ac479da20185c85)

	Parameters:

	
	h – complex gwpy TimeSeries object

	extra_time (float) – Extra time to take care of situations where the frequency is close to merger

	f_min (float) – Starting frequency employed in waveform generation

	original_f_min (float) – Initial starting frequency requested by the user

	f_isco – ISCO frequency

	Returns:

	complex lal timeseries object

	Return type:

	h_return

	
dingo.gw.waveform_generator.wfg_utils.taper_td_modes_in_place(hlm_td, tapering_flag: int = 1)

	Taper the time domain modes in place.

	Parameters:

	
	hlm_td (dict) – Dictionary with (l,m) keys and the complex lal time series objects for the
corresponding modes.

	tapering_flag (int = 1) –
	Flag for tapering. See e.g. lines 2773-2777 in
	https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/
_l_a_l_sim_inspiral_waveform_taper_8c_source.html#l00222

tapering_flag = 1 corresponds to LAL_SIM_INSPIRAL_TAPER_START

	
dingo.gw.waveform_generator.wfg_utils.td_modes_to_fd_modes(hlm_td, domain)

	Transform dict of td modes to dict of fd modes via FFT. The td modes are expected
to be tapered.

	Parameters:

	
	hlm_td (dict) – Dictionary with (l,m) keys and the complex lal time series objects for the
corresponding tapered modes.

	domain (dingo.gw.domains.FrequencyDomain) – Target domain after FFT.

	Returns:

	hlm_fd – Dictionary with (l,m) keys and numpy arrays with the corresponding modes as
values.

	Return type:

	dict

Module contents

 dingo.pipe package

dingo.pipe package

Subpackages

	dingo.pipe.nodes package
	Submodules

	dingo.pipe.nodes.generation_node module
	GenerationNode
	GenerationNode.event_data_file

	GenerationNode.executable

	GenerationNode.job_name

	GenerationNode.setup_arguments()

	dingo.pipe.nodes.importance_sampling_node module
	ImportanceSamplingNode
	ImportanceSamplingNode.executable

	ImportanceSamplingNode.result_file

	dingo.pipe.nodes.merge_node module
	MergeNode
	MergeNode.executable

	MergeNode.result_file

	dingo.pipe.nodes.pe_summary_node module
	PESummaryNode

	dingo.pipe.nodes.plot_node module
	PlotNode
	PlotNode.executable

	dingo.pipe.nodes.sampling_node module
	SamplingNode
	SamplingNode.executable

	SamplingNode.result_file

	SamplingNode.samples_file

	Module contents

Submodules

dingo.pipe.dag_creator module

	
dingo.pipe.dag_creator.generate_dag(inputs, model_args)

	

	
dingo.pipe.dag_creator.get_parallel_list(inputs)

	

	
dingo.pipe.dag_creator.get_trigger_time_list(inputs)

	Returns a list of GPS trigger times for each data segment

dingo.pipe.data_generation module

	
class dingo.pipe.data_generation.DataGenerationInput(args, unknown_args, create_data=True)

	Bases: DataGenerationInput

	
property event_data_file

	

	
property importance_sampling_updates

	

	
save_hdf5()

	Save frequency-domain strain and ASDs as DingoDataset HDF5 format.

	
dingo.pipe.data_generation.create_generation_parser()

	Data generation parser creation

	
dingo.pipe.data_generation.main()

	Data generation main logic

dingo.pipe.default_settings module

dingo.pipe.dingo_result module

	
dingo.pipe.dingo_result.main()

	

dingo.pipe.importance_sampling module

Script to importance sample based on Dingo samples. Based on bilby_pipe data
analysis script.

	
class dingo.pipe.importance_sampling.ImportanceSamplingInput(args, unknown_args)

	Bases: Input

	
property calibration_marginalization_kwargs

	

	
property importance_sampling_settings

	

	
property priors

	Read in and compose the prior at run-time

	
run_sampler()

	

	
dingo.pipe.importance_sampling.create_sampling_parser()

	Data analysis parser creation

	
dingo.pipe.importance_sampling.main()

	Data analysis main logic

dingo.pipe.main module

	
class dingo.pipe.main.MainInput(args, unknown_args, importance_sampling_updates)

	Bases: MainInput

	
property priors

	Read in and compose the prior at run-time

	
property request_cpus_importance_sampling

	

	
dingo.pipe.main.fill_in_arguments_from_model(args)

	

	
dingo.pipe.main.main()

	

	
dingo.pipe.main.write_complete_config_file(parser, args, inputs, input_cls=<class 'dingo.pipe.main.MainInput'>)

	

dingo.pipe.parser module

	
class dingo.pipe.parser.StoreBoolean(option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None, metavar=None)

	Bases: Action

argparse class for robust handling of booleans with configargparse

When using configargparse, if the argument is setup with
action=”store_true”, but the default is set to True, then there is no way,
in the config file to switch the parameter off. To resolve this, this class
handles the boolean properly.

	
dingo.pipe.parser.create_parser(top_level=True)

	Creates the BilbyArgParser for dingo_pipe

	Parameters:

	top_level – If true, parser is to be used at the top-level with requirement
checking etc., else it is an internal call and will be ignored.

	Returns:

	parser – Argument parser

	Return type:

	BilbyArgParser instance

dingo.pipe.plot module

	
dingo.pipe.plot.create_parser()

	Generate a parser for the plot script

	Returns:

	parser – A parser with all the default options already added

	Return type:

	BilbyArgParser

	
dingo.pipe.plot.main()

	

dingo.pipe.sampling module

Script to sample from a Dingo model. Based on bilby_pipe data analysis script.

	
class dingo.pipe.sampling.SamplingInput(args, unknown_args)

	Bases: Input

	
property density_recovery_settings

	

	
run_sampler()

	

	
dingo.pipe.sampling.create_sampling_parser()

	Data analysis parser creation

	
dingo.pipe.sampling.main()

	Data analysis main logic

dingo.pipe.utils module

Module contents

 dingo.pipe.nodes package

dingo.pipe.nodes package

Submodules

dingo.pipe.nodes.generation_node module

	
class dingo.pipe.nodes.generation_node.GenerationNode(inputs, importance_sampling=False, **kwargs)

	Bases: GenerationNode

Node for data generation jobs

Parameters:

	inputs: bilby_pipe.main.MainInput
	The user-defined inputs

	trigger_time: float
	The trigger time to use in generating analysis data

	idx: int
	The index of the data-generation job, used to label data products

	dag: bilby_pipe.dag.Dag
	The dag structure

	parent: bilby_pipe.job_creation.node.Node (optional)
	Any job to set as the parent to this job - used to enforce
dependencies

	
property event_data_file

	

	
property executable

	

	
property job_name

	

	
setup_arguments(**kwargs)

	

dingo.pipe.nodes.importance_sampling_node module

	
class dingo.pipe.nodes.importance_sampling_node.ImportanceSamplingNode(inputs, sampling_node, generation_node, parallel_idx, dag)

	Bases: AnalysisNode

	
property executable

	

	
property result_file

	

dingo.pipe.nodes.merge_node module

	
class dingo.pipe.nodes.merge_node.MergeNode(**kwargs)

	Bases: MergeNode

	
property executable

	

	
property result_file

	

dingo.pipe.nodes.pe_summary_node module

	
class dingo.pipe.nodes.pe_summary_node.PESummaryNode(inputs, merged_node_list, generation_node_list, dag)

	Bases: PESummaryNode

dingo.pipe.nodes.plot_node module

	
class dingo.pipe.nodes.plot_node.PlotNode(inputs, merged_node, dag)

	Bases: PlotNode

	
property executable

	

dingo.pipe.nodes.sampling_node module

	
class dingo.pipe.nodes.sampling_node.SamplingNode(inputs, generation_node, dag)

	Bases: AnalysisNode

	
property executable

	

	
property result_file

	

	
property samples_file

	

Module contents

 Python Module Index

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dingo	

 	
 	
 dingo.asimov	

 	
 	
 dingo.core	

 	
 	
 dingo.core.dataset	

 	
 	
 dingo.core.density	

 	
 	
 dingo.core.density.interpolation	

 	
 	
 dingo.core.density.nde_settings	

 	
 	
 dingo.core.density.unconditional_density_estimation	

 	
 	
 dingo.core.likelihood	

 	
 	
 dingo.core.models	

 	
 	
 dingo.core.models.posterior_model	

 	
 	
 dingo.core.multiprocessing	

 	
 	
 dingo.core.nn	

 	
 	
 dingo.core.nn.enets	

 	
 	
 dingo.core.nn.nsf	

 	
 	
 dingo.core.result	

 	
 	
 dingo.core.samplers	

 	
 	
 dingo.core.transforms	

 	
 	
 dingo.core.utils	

 	
 	
 dingo.core.utils.condor_utils	

 	
 	
 dingo.core.utils.gnpeutils	

 	
 	
 dingo.core.utils.logging_utils	

 	
 	
 dingo.core.utils.misc	

 	
 	
 dingo.core.utils.plotting	

 	
 	
 dingo.core.utils.pt_to_hdf5	

 	
 	
 dingo.core.utils.torchutils	

 	
 	
 dingo.core.utils.trainutils	

 	
 	
 dingo.gw	

 	
 	
 dingo.gw.conversion	

 	
 	
 dingo.gw.conversion.spin_conversion	

 	
 	
 dingo.gw.data	

 	
 	
 dingo.gw.data.data_download	

 	
 	
 dingo.gw.data.data_preparation	

 	
 	
 dingo.gw.data.event_dataset	

 	
 	
 dingo.gw.dataset	

 	
 	
 dingo.gw.dataset.generate_dataset	

 	
 	
 dingo.gw.dataset.generate_dataset_dag	

 	
 	
 dingo.gw.dataset.utils	

 	
 	
 dingo.gw.dataset.waveform_dataset	

 	
 	
 dingo.gw.domains	

 	
 	
 dingo.gw.download_strain_data	

 	
 	
 dingo.gw.gwutils	

 	
 	
 dingo.gw.importance_sampling	

 	
 	
 dingo.gw.importance_sampling.diagnostics	

 	
 	
 dingo.gw.importance_sampling.importance_weights	

 	
 	
 dingo.gw.inference	

 	
 	
 dingo.gw.inference.gw_samplers	

 	
 	
 dingo.gw.inference.inference_pipeline	

 	
 	
 dingo.gw.inference.visualization	

 	
 	
 dingo.gw.injection	

 	
 	
 dingo.gw.likelihood	

 	
 	
 dingo.gw.ls_cli	

 	
 	
 dingo.gw.noise	

 	
 	
 dingo.gw.noise.asd_dataset	

 	
 	
 dingo.gw.noise.asd_estimation	

 	
 	
 dingo.gw.noise.generate_dataset	

 	
 	
 dingo.gw.noise.generate_dataset_dag	

 	
 	
 dingo.gw.noise.synthetic	

 	
 	
 dingo.gw.noise.synthetic.asd_parameterization	

 	
 	
 dingo.gw.noise.synthetic.asd_sampling	

 	
 	
 dingo.gw.noise.synthetic.generate_dataset	

 	
 	
 dingo.gw.noise.synthetic.utils	

 	
 	
 dingo.gw.noise.utils	

 	
 	
 dingo.gw.prior	

 	
 	
 dingo.gw.result	

 	
 	
 dingo.gw.SVD	

 	
 	
 dingo.gw.temporary_debug_utils	

 	
 	
 dingo.gw.training	

 	
 	
 dingo.gw.training.train_builders	

 	
 	
 dingo.gw.training.train_pipeline	

 	
 	
 dingo.gw.training.train_pipeline_condor	

 	
 	
 dingo.gw.training.utils	

 	
 	
 dingo.gw.transforms	

 	
 	
 dingo.gw.transforms.detector_transforms	

 	
 	
 dingo.gw.transforms.general_transforms	

 	
 	
 dingo.gw.transforms.gnpe_transforms	

 	
 	
 dingo.gw.transforms.inference_transforms	

 	
 	
 dingo.gw.transforms.noise_transforms	

 	
 	
 dingo.gw.transforms.parameter_transforms	

 	
 	
 dingo.gw.waveform_generator	

 	
 	
 dingo.gw.waveform_generator.frame_utils	

 	
 	
 dingo.gw.waveform_generator.waveform_generator	

 	
 	
 dingo.gw.waveform_generator.wfg_utils	

 	
 	
 dingo.pipe	

 	
 	
 dingo.pipe.dag_creator	

 	
 	
 dingo.pipe.data_generation	

 	
 	
 dingo.pipe.default_settings	

 	
 	
 dingo.pipe.dingo_result	

 	
 	
 dingo.pipe.importance_sampling	

 	
 	
 dingo.pipe.main	

 	
 	
 dingo.pipe.nodes	

 	
 	
 dingo.pipe.nodes.generation_node	

 	
 	
 dingo.pipe.nodes.importance_sampling_node	

 	
 	
 dingo.pipe.nodes.merge_node	

 	
 	
 dingo.pipe.nodes.pe_summary_node	

 	
 	
 dingo.pipe.nodes.plot_node	

 	
 	
 dingo.pipe.nodes.sampling_node	

 	
 	
 dingo.pipe.parser	

 	
 	
 dingo.pipe.plot	

 	
 	
 dingo.pipe.sampling	

 	
 	
 dingo.pipe.utils	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_phase() (dingo.gw.domains.FrequencyDomain static method), [1]

 	AddWhiteNoiseComplex (class in dingo.gw.transforms)

 	(class in dingo.gw.transforms.noise_transforms)

 	analyze_event() (in module dingo.gw.inference.inference_pipeline)

 	append_stage() (in module dingo.gw.training.utils)

 	apply_func_with_multiprocessing() (in module dingo.core.multiprocessing)

 	
 	ApplyCalibrationUncertainty (class in dingo.gw.transforms.detector_transforms)

 	ApplySVD (class in dingo.gw.SVD)

 	approximant (dingo.gw.result.Result property)

 	asd (dingo.gw.injection.GWSignal property)

 	ASDDataset (class in dingo.gw.noise.asd_dataset)

 	autocomplete_model_kwargs_nsf() (in module dingo.core.nn.nsf)

 	AvgTracker (class in dingo.core.utils.trainutils)

B

 	
 	base_metadata (dingo.core.result.Result property)

 	BBHExtrinsicPriorDict (class in dingo.gw.prior)

 	build_dataset() (in module dingo.gw.training.train_builders)

 	build_domain() (in module dingo.gw.domains)

 	build_domain_from_model_metadata() (in module dingo.gw.domains)

 	
 	build_prior_with_defaults() (in module dingo.gw.prior)

 	build_stationary_gaussian_likelihood() (in module dingo.gw.likelihood)

 	build_svd_cli() (in module dingo.gw.dataset.utils)

 	build_svd_for_embedding_network() (in module dingo.gw.training.train_builders)

 	build_train_and_test_loaders() (in module dingo.core.utils.torchutils)

C

 	
 	calibration_marginalization_kwargs (dingo.gw.injection.GWSignal property)

 	(dingo.gw.result.Result property)

 	(dingo.pipe.importance_sampling.ImportanceSamplingInput property)

 	cartesian_spins() (in module dingo.gw.conversion.spin_conversion)

 	CATALOGS (in module dingo.gw.noise.utils)

 	change_spin_conversion_phase() (in module dingo.gw.conversion.spin_conversion)

 	check_directory_exists_and_if_not_mkdir() (in module dingo.core.utils.logging_utils)

 	check_equal_dict_of_arrays() (in module dingo.core.result)

 	component_masses() (in module dingo.gw.conversion.spin_conversion)

 	compress() (dingo.gw.SVD.SVDBasis method)

 	compute_test_mismatches() (dingo.gw.SVD.SVDBasis method)

 	configure_runs() (in module dingo.gw.dataset.generate_dataset_dag)

 	constraint_parameter_keys (dingo.core.result.Result property)

 	context (dingo.core.samplers.GNPESampler property)

 	(dingo.core.samplers.Sampler attribute)

 	(dingo.core.samplers.Sampler property)

 	(dingo.gw.inference.gw_samplers.GWSampler property)

 	convert_J_to_L0_frame() (in module dingo.gw.waveform_generator.frame_utils)

 	copy_logfiles() (in module dingo.core.utils.condor_utils)

 	(in module dingo.gw.training.train_pipeline_condor)

 	copyfile() (in module dingo.core.utils.condor_utils)

 	(in module dingo.core.utils.trainutils)

 	(in module dingo.gw.training.train_pipeline_condor)

 	
 	CopyToExtrinsicParameters (class in dingo.gw.transforms.inference_transforms)

 	create_args_string() (in module dingo.gw.dataset.generate_dataset_dag)

 	(in module dingo.gw.noise.generate_dataset_dag)

 	create_base_transform() (in module dingo.core.nn.nsf)

 	create_dag() (in module dingo.gw.dataset.generate_dataset_dag)

 	(in module dingo.gw.noise.generate_dataset_dag)

 	create_enet_with_projection_layer_and_dense_resnet() (in module dingo.core.nn.enets)

 	create_generation_parser() (in module dingo.pipe.data_generation)

 	create_linear_transform() (in module dingo.core.nn.nsf)

 	create_nsf_model() (in module dingo.core.nn.nsf)

 	create_nsf_with_rb_projection_embedding_net() (in module dingo.core.nn.nsf)

 	create_nsf_wrapped() (in module dingo.core.nn.nsf)

 	create_parser() (in module dingo.pipe.parser)

 	(in module dingo.pipe.plot)

 	create_sampling_parser() (in module dingo.pipe.importance_sampling)

 	(in module dingo.pipe.sampling)

 	create_submission_file() (in module dingo.core.utils.condor_utils)

 	(in module dingo.gw.training.train_pipeline_condor)

 	create_submission_file_and_submit_job() (in module dingo.core.utils.condor_utils)

 	create_transform() (in module dingo.core.nn.nsf)

 	curve_fit() (in module dingo.gw.noise.synthetic.asd_parameterization)

D

 	
 	d_inner_h_complex() (dingo.gw.likelihood.StationaryGaussianGWLikelihood method)

 	d_inner_h_complex_multi() (dingo.gw.likelihood.StationaryGaussianGWLikelihood method)

 	data_to_domain() (in module dingo.gw.data.data_preparation)

 	DataGenerationInput (class in dingo.pipe.data_generation)

 	dataset_type (dingo.core.dataset.DingoDataset attribute)

 	(dingo.core.result.Result attribute)

 	(dingo.gw.data.event_dataset.EventDataset attribute)

 	(dingo.gw.dataset.waveform_dataset.WaveformDataset attribute)

 	(dingo.gw.noise.asd_dataset.ASDDataset attribute)

 	(dingo.gw.result.Result attribute)

 	(dingo.gw.SVD.SVDBasis attribute)

 	decompress() (dingo.gw.SVD.SVDBasis method)

 	default_conversion_function() (dingo.gw.prior.BBHExtrinsicPriorDict method)

 	delta_f (dingo.gw.domains.FrequencyDomain property), [1]

 	delta_t (dingo.gw.domains.TimeDomain property)

 	DenseResidualNet (class in dingo.core.nn.enets)

 	density_recovery_settings (dingo.pipe.sampling.SamplingInput property)

 	determine_dataset_type() (in module dingo.gw.ls_cli)

 	
 dingo

 	module

 	
 dingo.asimov

 	module

 	
 dingo.core

 	module

 	
 dingo.core.dataset

 	module

 	
 dingo.core.density

 	module

 	
 dingo.core.density.interpolation

 	module

 	
 dingo.core.density.nde_settings

 	module

 	
 dingo.core.density.unconditional_density_estimation

 	module

 	
 dingo.core.likelihood

 	module

 	
 dingo.core.models

 	module

 	
 dingo.core.models.posterior_model

 	module

 	
 dingo.core.multiprocessing

 	module

 	
 dingo.core.nn

 	module

 	
 dingo.core.nn.enets

 	module

 	
 dingo.core.nn.nsf

 	module

 	
 dingo.core.result

 	module

 	
 dingo.core.samplers

 	module

 	
 dingo.core.transforms

 	module

 	
 dingo.core.utils

 	module

 	
 dingo.core.utils.condor_utils

 	module

 	
 dingo.core.utils.gnpeutils

 	module

 	
 dingo.core.utils.logging_utils

 	module

 	
 dingo.core.utils.misc

 	module

 	
 dingo.core.utils.plotting

 	module

 	
 dingo.core.utils.pt_to_hdf5

 	module

 	
 dingo.core.utils.torchutils

 	module

 	
 dingo.core.utils.trainutils

 	module

 	
 dingo.gw

 	module

 	
 dingo.gw.conversion

 	module

 	
 dingo.gw.conversion.spin_conversion

 	module

 	
 dingo.gw.data

 	module

 	
 dingo.gw.data.data_download

 	module

 	
 dingo.gw.data.data_preparation

 	module

 	
 dingo.gw.data.event_dataset

 	module

 	
 dingo.gw.dataset

 	module

 	
 dingo.gw.dataset.generate_dataset

 	module

 	
 dingo.gw.dataset.generate_dataset_dag

 	module

 	
 dingo.gw.dataset.utils

 	module

 	
 dingo.gw.dataset.waveform_dataset

 	module

 	
 dingo.gw.domains

 	module

 	
 dingo.gw.download_strain_data

 	module

 	
 dingo.gw.gwutils

 	module

 	
 dingo.gw.importance_sampling

 	module

 	
 dingo.gw.importance_sampling.diagnostics

 	module

 	
 dingo.gw.importance_sampling.importance_weights

 	module

 	
 dingo.gw.inference

 	module

 	
 dingo.gw.inference.gw_samplers

 	module

 	
 dingo.gw.inference.inference_pipeline

 	module

 	
 dingo.gw.inference.visualization

 	module

 	
 dingo.gw.injection

 	module

 	
 	
 dingo.gw.likelihood

 	module

 	
 dingo.gw.ls_cli

 	module

 	
 dingo.gw.noise

 	module

 	
 dingo.gw.noise.asd_dataset

 	module

 	
 dingo.gw.noise.asd_estimation

 	module

 	
 dingo.gw.noise.generate_dataset

 	module

 	
 dingo.gw.noise.generate_dataset_dag

 	module

 	
 dingo.gw.noise.synthetic

 	module

 	
 dingo.gw.noise.synthetic.asd_parameterization

 	module

 	
 dingo.gw.noise.synthetic.asd_sampling

 	module

 	
 dingo.gw.noise.synthetic.generate_dataset

 	module

 	
 dingo.gw.noise.synthetic.utils

 	module

 	
 dingo.gw.noise.utils

 	module

 	
 dingo.gw.prior

 	module

 	
 dingo.gw.result

 	module

 	
 dingo.gw.SVD

 	module

 	
 dingo.gw.temporary_debug_utils

 	module

 	
 dingo.gw.training

 	module

 	
 dingo.gw.training.train_builders

 	module

 	
 dingo.gw.training.train_pipeline

 	module

 	
 dingo.gw.training.train_pipeline_condor

 	module

 	
 dingo.gw.training.utils

 	module

 	
 dingo.gw.transforms

 	module

 	
 dingo.gw.transforms.detector_transforms

 	module

 	
 dingo.gw.transforms.general_transforms

 	module

 	
 dingo.gw.transforms.gnpe_transforms

 	module

 	
 dingo.gw.transforms.inference_transforms

 	module

 	
 dingo.gw.transforms.noise_transforms

 	module

 	
 dingo.gw.transforms.parameter_transforms

 	module

 	
 dingo.gw.waveform_generator

 	module

 	
 dingo.gw.waveform_generator.frame_utils

 	module

 	
 dingo.gw.waveform_generator.waveform_generator

 	module

 	
 dingo.gw.waveform_generator.wfg_utils

 	module

 	
 dingo.pipe

 	module

 	
 dingo.pipe.dag_creator

 	module

 	
 dingo.pipe.data_generation

 	module

 	
 dingo.pipe.default_settings

 	module

 	
 dingo.pipe.dingo_result

 	module

 	
 dingo.pipe.importance_sampling

 	module

 	
 dingo.pipe.main

 	module

 	
 dingo.pipe.nodes

 	module

 	
 dingo.pipe.nodes.generation_node

 	module

 	
 dingo.pipe.nodes.importance_sampling_node

 	module

 	
 dingo.pipe.nodes.merge_node

 	module

 	
 dingo.pipe.nodes.pe_summary_node

 	module

 	
 dingo.pipe.nodes.plot_node

 	module

 	
 dingo.pipe.nodes.sampling_node

 	module

 	
 dingo.pipe.parser

 	module

 	
 dingo.pipe.plot

 	module

 	
 dingo.pipe.sampling

 	module

 	
 dingo.pipe.utils

 	module

 	DingoDataset (class in dingo.core.dataset)

 	Domain (class in dingo.gw.domains)

 	domain_dict (dingo.gw.domains.Domain property)

 	(dingo.gw.domains.FrequencyDomain property), [1]

 	(dingo.gw.domains.TimeDomain property)

 	download_and_estimate_cli() (in module dingo.gw.noise.asd_estimation)

 	download_and_estimate_psds() (in module dingo.gw.noise.asd_estimation)

 	download_event_data_in_FD() (in module dingo.gw.download_strain_data)

 	download_psd() (in module dingo.gw.data.data_download)

 	download_raw_data() (in module dingo.gw.data.data_download)

 	download_strain_data_in_FD() (in module dingo.gw.download_strain_data)

 	duration (dingo.gw.domains.Domain property)

 	(dingo.gw.domains.FrequencyDomain property), [1]

 	(dingo.gw.domains.TimeDomain property)

E

 	
 	effective_sample_size (dingo.core.result.Result property)

 	estimate_single_psd() (in module dingo.gw.download_strain_data)

 	event_data_file (dingo.pipe.data_generation.DataGenerationInput property)

 	(dingo.pipe.nodes.generation_node.GenerationNode property)

 	event_metadata (dingo.core.samplers.GNPESampler property)

 	(dingo.core.samplers.Sampler attribute)

 	(dingo.core.samplers.Sampler property)

 	(dingo.gw.inference.gw_samplers.GWSampler property)

 	
 	EventDataset (class in dingo.gw.data.event_dataset)

 	executable (dingo.pipe.nodes.generation_node.GenerationNode property)

 	(dingo.pipe.nodes.importance_sampling_node.ImportanceSamplingNode property)

 	(dingo.pipe.nodes.merge_node.MergeNode property)

 	(dingo.pipe.nodes.plot_node.PlotNode property)

 	(dingo.pipe.nodes.sampling_node.SamplingNode property)

 	ExpandStrain (class in dingo.gw.transforms.inference_transforms)

F

 	
 	f_max (dingo.gw.domains.Domain property)

 	(dingo.gw.domains.FrequencyDomain property), [1]

 	(dingo.gw.domains.TimeDomain property)

 	f_min (dingo.gw.domains.FrequencyDomain property), [1]

 	f_ref (dingo.gw.result.Result property)

 	fill_in_arguments_from_model() (in module dingo.pipe.main)

 	fit() (dingo.gw.noise.synthetic.asd_sampling.KDE method)

 	fit_broadband_noise() (in module dingo.gw.noise.synthetic.asd_parameterization)

 	fit_spectral() (in module dingo.gw.noise.synthetic.asd_parameterization)

 	fix_random_seeds() (in module dingo.core.utils.torchutils)

 	fixed_parameter_keys (dingo.core.result.Result property)

 	FlowWrapper (class in dingo.core.nn.nsf)

 	forward() (dingo.core.nn.enets.DenseResidualNet method)

 	(dingo.core.nn.enets.LinearProjectionRB method)

 	(dingo.core.nn.enets.ModuleMerger method)

 	(dingo.core.nn.nsf.FlowWrapper method)

 	
 	forward_pass_with_unpacked_tuple() (in module dingo.core.utils.torchutils)

 	freeze() (in module dingo.core.result)

 	frequency_mask (dingo.gw.domains.FrequencyDomain property), [1]

 	frequency_mask_length (dingo.gw.domains.FrequencyDomain property), [1]

 	FrequencyDomain (class in dingo.gw.domains), [1]

 	from_dictionary() (dingo.core.dataset.DingoDataset method)

 	(dingo.gw.SVD.SVDBasis method)

 	from_file() (dingo.core.dataset.DingoDataset method)

 	(dingo.gw.SVD.SVDBasis method)

 	from_posterior_model_metadata() (dingo.gw.injection.Injection class method), [1]

G

 	
 	generate_basis() (dingo.gw.SVD.SVDBasis method)

 	generate_cornerplot() (in module dingo.gw.inference.visualization)

 	generate_dag() (in module dingo.pipe.dag_creator)

 	generate_dataset() (in module dingo.gw.dataset.generate_dataset), [1]

 	(in module dingo.gw.noise.generate_dataset)

 	(in module dingo.gw.noise.synthetic.generate_dataset)

 	generate_FD_modes_LO() (dingo.gw.waveform_generator.waveform_generator.NewInterfaceWaveformGenerator method)

 	(dingo.gw.waveform_generator.waveform_generator.WaveformGenerator method)

 	(dingo.gw.waveform_generator.WaveformGenerator method)

 	generate_FD_waveform() (dingo.gw.waveform_generator.waveform_generator.NewInterfaceWaveformGenerator method)

 	(dingo.gw.waveform_generator.waveform_generator.WaveformGenerator method)

 	(dingo.gw.waveform_generator.WaveformGenerator method)

 	generate_hplus_hcross() (dingo.gw.waveform_generator.waveform_generator.WaveformGenerator method)

 	(dingo.gw.waveform_generator.WaveformGenerator method)

 	generate_hplus_hcross_m() (dingo.gw.waveform_generator.waveform_generator.NewInterfaceWaveformGenerator method)

 	(dingo.gw.waveform_generator.waveform_generator.WaveformGenerator method)

 	(dingo.gw.waveform_generator.WaveformGenerator method)

 	generate_parameters_and_polarizations() (in module dingo.gw.dataset.generate_dataset)

 	generate_TD_modes_L0() (dingo.gw.waveform_generator.waveform_generator.NewInterfaceWaveformGenerator method)

 	(dingo.gw.waveform_generator.waveform_generator.WaveformGenerator method)

 	(dingo.gw.waveform_generator.WaveformGenerator method)

 	generate_TD_modes_L0_conditioned_extra_time() (dingo.gw.waveform_generator.waveform_generator.NewInterfaceWaveformGenerator method)

 	generate_TD_waveform() (dingo.gw.waveform_generator.waveform_generator.NewInterfaceWaveformGenerator method)

 	(dingo.gw.waveform_generator.waveform_generator.WaveformGenerator method)

 	(dingo.gw.waveform_generator.WaveformGenerator method)

 	generate_waveforms_parallel() (in module dingo.gw.waveform_generator.waveform_generator)

 	generate_waveforms_task_func() (in module dingo.gw.waveform_generator.waveform_generator)

 	GenerationNode (class in dingo.pipe.nodes.generation_node)

 	get_activation_function_from_string() (in module dingo.core.utils.torchutils)

 	get_avg() (dingo.core.utils.trainutils.AvgTracker method)

 	(dingo.core.utils.trainutils.LossInfo method)

 	get_default_nde_settings_3d() (in module dingo.core.density.nde_settings)

 	get_event_data() (in module dingo.gw.inference.inference_pipeline)

 	get_event_data_and_domain() (in module dingo.gw.data.data_preparation)

 	get_event_gps_times() (in module dingo.gw.noise.utils)

 	
 	get_extrinsic_prior_dict() (in module dingo.gw.gwutils)

 	get_index_for_elem() (in module dingo.gw.noise.synthetic.utils)

 	get_JL0_euler_angles() (in module dingo.gw.waveform_generator.frame_utils)

 	get_lr() (in module dingo.core.utils.torchutils)

 	get_mismatch() (in module dingo.gw.gwutils)

 	get_model_callable() (in module dingo.core.models.posterior_model)

 	get_number_of_model_parameters() (in module dingo.core.utils.torchutils)

 	get_optimizer_from_kwargs() (in module dingo.core.utils.torchutils)

 	get_parallel_list() (in module dingo.pipe.dag_creator)

 	get_polarizations_from_fd_modes_m() (in module dingo.gw.waveform_generator.wfg_utils)

 	get_rescaling_params() (in module dingo.gw.noise.synthetic.asd_sampling)

 	get_sample_frequencies_astype() (dingo.gw.domains.FrequencyDomain method), [1]

 	get_samples_bilby_phase() (dingo.gw.result.Result method), [1]

 	get_scheduler_from_kwargs() (in module dingo.core.utils.torchutils)

 	get_standardization_dict() (in module dingo.gw.gwutils)

 	get_starting_frequency_for_SEOBRNRv5_conditioning() (in module dingo.gw.waveform_generator.wfg_utils)

 	get_tapering_window_for_complex_time_series() (in module dingo.gw.waveform_generator.wfg_utils)

 	get_time_segments() (in module dingo.gw.noise.utils)

 	get_trigger_time_list() (in module dingo.pipe.dag_creator)

 	get_version() (in module dingo.core.utils.misc)

 	get_wfg() (in module dingo.gw.likelihood)

 	get_window() (in module dingo.gw.gwutils)

 	get_window_factor() (in module dingo.gw.gwutils)

 	GetDetectorTimes (class in dingo.gw.transforms)

 	(class in dingo.gw.transforms.detector_transforms)

 	GetItem (class in dingo.core.transforms)

 	gnpe_proxy_parameters (dingo.core.samplers.GNPESampler property)

 	GNPEBase (class in dingo.gw.transforms.gnpe_transforms)

 	GNPECoalescenceTimes (class in dingo.gw.transforms)

 	(class in dingo.gw.transforms.gnpe_transforms)

 	GNPESampler (class in dingo.core.samplers), [1]

 	gps_info (dingo.gw.noise.asd_dataset.ASDDataset property)

 	GWSampler (class in dingo.gw.inference.gw_samplers), [1]

 	GWSamplerGNPE (class in dingo.gw.inference.gw_samplers)

 	GWSamplerMixin (class in dingo.gw.inference.gw_samplers)

 	GWSignal (class in dingo.gw.injection)

I

 	
 	importance_sample() (dingo.core.result.Result method)

 	(dingo.gw.result.Result method)

 	importance_sampling_settings (dingo.pipe.importance_sampling.ImportanceSamplingInput property)

 	importance_sampling_updates (dingo.pipe.data_generation.DataGenerationInput property)

 	ImportanceSamplingInput (class in dingo.pipe.importance_sampling)

 	ImportanceSamplingNode (class in dingo.pipe.nodes.importance_sampling_node)

 	inference_parameters (dingo.core.samplers.Sampler attribute)

 	init_layers() (dingo.core.nn.enets.LinearProjectionRB method)

 	init_sampler (dingo.core.samplers.GNPESampler property)

 	initialize_decompression() (dingo.gw.dataset.waveform_dataset.WaveformDataset method)

 	(dingo.gw.dataset.WaveformDataset method)

 	initialize_model() (dingo.core.models.posterior_model.PosteriorModel method)

 	initialize_optimizer_and_scheduler() (dingo.core.models.posterior_model.PosteriorModel method)

 	initialize_stage() (in module dingo.gw.training.train_pipeline)

 	
 	initialize_time_marginalization() (dingo.gw.likelihood.StationaryGaussianGWLikelihood method)

 	Injection (class in dingo.gw.injection), [1]

 	injection() (dingo.gw.injection.Injection method), [1]

 	injection_parameters (dingo.core.result.Result property)

 	inner_product() (in module dingo.gw.likelihood)

 	inner_product_complex() (in module dingo.gw.likelihood)

 	input_dim (dingo.core.nn.enets.LinearProjectionRB property)

 	interferometers (dingo.gw.result.Result property)

 	interpolated_log_prob() (in module dingo.core.density.interpolation)

 	interpolated_log_prob_multi() (in module dingo.core.density.interpolation)

 	interpolated_sample_and_log_prob() (in module dingo.core.density.interpolation)

 	interpolated_sample_and_log_prob_multi() (in module dingo.core.density.interpolation)

 	inverse() (dingo.gw.transforms.gnpe_transforms.GNPEBase method)

 	(dingo.gw.transforms.parameter_transforms.StandardizeParameters method)

 	IterationTracker (class in dingo.core.utils.gnpeutils)

J

 	
 	job_name (dingo.pipe.nodes.generation_node.GenerationNode property)

K

 	
 	KDE (class in dingo.gw.noise.synthetic.asd_sampling)

L

 	
 	length_info (dingo.gw.noise.asd_dataset.ASDDataset property)

 	Likelihood (class in dingo.core.likelihood)

 	limits_exceeded() (dingo.core.utils.trainutils.RuntimeLimits method)

 	LinearProjectionRB (class in dingo.core.nn.enets)

 	linked_list_modes_to_dict_modes() (in module dingo.gw.waveform_generator.wfg_utils)

 	load_model() (dingo.core.models.posterior_model.PosteriorModel method)

 	load_raw_data() (in module dingo.gw.data.data_preparation)

 	load_ref_samples() (in module dingo.gw.inference.visualization)

 	load_supplemental() (dingo.gw.dataset.waveform_dataset.WaveformDataset method)

 	(dingo.gw.dataset.WaveformDataset method)

 	local_limits_exceeded() (dingo.core.utils.trainutils.RuntimeLimits method)

 	log_bayes_factor (dingo.core.result.Result property)

 	
 	log_evidence_std (dingo.core.result.Result property)

 	log_likelihood() (dingo.core.likelihood.Likelihood method)

 	(dingo.gw.likelihood.StationaryGaussianGWLikelihood method)

 	log_likelihood_multi() (dingo.core.likelihood.Likelihood method)

 	log_likelihood_phase_grid() (dingo.gw.likelihood.StationaryGaussianGWLikelihood method)

 	log_prob() (dingo.core.nn.nsf.FlowWrapper method)

 	(dingo.core.samplers.GNPESampler method)

 	(dingo.core.samplers.Sampler method), [1]

 	(dingo.gw.inference.gw_samplers.GWSampler method)

 	lorentzian_eval() (in module dingo.gw.noise.synthetic.utils)

 	LossInfo (class in dingo.core.utils.trainutils)

 	ls() (in module dingo.gw.ls_cli)

M

 	
 	main() (in module dingo.core.utils.pt_to_hdf5)

 	(in module dingo.gw.dataset.generate_dataset)

 	(in module dingo.gw.dataset.generate_dataset_dag)

 	(in module dingo.gw.importance_sampling.importance_weights)

 	(in module dingo.gw.likelihood)

 	(in module dingo.gw.noise.synthetic.generate_dataset)

 	(in module dingo.pipe.data_generation)

 	(in module dingo.pipe.dingo_result)

 	(in module dingo.pipe.importance_sampling)

 	(in module dingo.pipe.main)

 	(in module dingo.pipe.plot)

 	(in module dingo.pipe.sampling)

 	MainInput (class in dingo.pipe.main)

 	max_idx (dingo.gw.domains.Domain property)

 	(dingo.gw.domains.FrequencyDomain property)

 	(dingo.gw.domains.TimeDomain property)

 	mean_std() (dingo.gw.prior.BBHExtrinsicPriorDict method)

 	merge() (dingo.core.result.Result class method)

 	(dingo.gw.result.Result class method)

 	merge_datasets() (in module dingo.gw.dataset.utils)

 	(in module dingo.gw.noise.utils)

 	merge_datasets_cli() (in module dingo.gw.dataset.utils)

 	(in module dingo.gw.noise.utils)

 	MergeNode (class in dingo.pipe.nodes.merge_node)

 	metadata (dingo.core.result.Result property)

 	(dingo.core.samplers.Sampler attribute)

 	min_idx (dingo.gw.domains.Domain property)

 	(dingo.gw.domains.FrequencyDomain property)

 	(dingo.gw.domains.TimeDomain property)

 	model (dingo.core.samplers.Sampler attribute)

 	model_to_device() (dingo.core.models.posterior_model.PosteriorModel method)

 	
 module

 	dingo

 	dingo.asimov

 	dingo.core

 	dingo.core.dataset

 	dingo.core.density

 	dingo.core.density.interpolation

 	dingo.core.density.nde_settings

 	dingo.core.density.unconditional_density_estimation

 	dingo.core.likelihood

 	dingo.core.models

 	dingo.core.models.posterior_model

 	dingo.core.multiprocessing

 	dingo.core.nn

 	dingo.core.nn.enets

 	dingo.core.nn.nsf

 	dingo.core.result

 	dingo.core.samplers

 	dingo.core.transforms

 	dingo.core.utils

 	dingo.core.utils.condor_utils

 	dingo.core.utils.gnpeutils

 	dingo.core.utils.logging_utils

 	dingo.core.utils.misc

 	dingo.core.utils.plotting

 	dingo.core.utils.pt_to_hdf5

 	dingo.core.utils.torchutils

 	dingo.core.utils.trainutils

 	dingo.gw

 	dingo.gw.conversion

 	dingo.gw.conversion.spin_conversion

 	dingo.gw.data

 	dingo.gw.data.data_download

 	dingo.gw.data.data_preparation

 	dingo.gw.data.event_dataset

 	dingo.gw.dataset

 	dingo.gw.dataset.generate_dataset

 	dingo.gw.dataset.generate_dataset_dag

 	dingo.gw.dataset.utils

 	dingo.gw.dataset.waveform_dataset

 	dingo.gw.domains

 	dingo.gw.download_strain_data

 	dingo.gw.gwutils

 	dingo.gw.importance_sampling

 	dingo.gw.importance_sampling.diagnostics

 	dingo.gw.importance_sampling.importance_weights

 	dingo.gw.inference

 	dingo.gw.inference.gw_samplers

 	dingo.gw.inference.inference_pipeline

 	dingo.gw.inference.visualization

 	dingo.gw.injection

 	dingo.gw.likelihood

 	dingo.gw.ls_cli

 	dingo.gw.noise

 	dingo.gw.noise.asd_dataset

 	dingo.gw.noise.asd_estimation

 	dingo.gw.noise.generate_dataset

 	dingo.gw.noise.generate_dataset_dag

 	dingo.gw.noise.synthetic

 	dingo.gw.noise.synthetic.asd_parameterization

 	dingo.gw.noise.synthetic.asd_sampling

 	dingo.gw.noise.synthetic.generate_dataset

 	dingo.gw.noise.synthetic.utils

 	dingo.gw.noise.utils

 	dingo.gw.prior

 	dingo.gw.result

 	dingo.gw.SVD

 	dingo.gw.temporary_debug_utils

 	dingo.gw.training

 	dingo.gw.training.train_builders

 	dingo.gw.training.train_pipeline

 	dingo.gw.training.train_pipeline_condor

 	dingo.gw.training.utils

 	dingo.gw.transforms

 	dingo.gw.transforms.detector_transforms

 	dingo.gw.transforms.general_transforms

 	dingo.gw.transforms.gnpe_transforms

 	dingo.gw.transforms.inference_transforms

 	dingo.gw.transforms.noise_transforms

 	dingo.gw.transforms.parameter_transforms

 	dingo.gw.waveform_generator

 	dingo.gw.waveform_generator.frame_utils

 	dingo.gw.waveform_generator.waveform_generator

 	dingo.gw.waveform_generator.wfg_utils

 	dingo.pipe

 	dingo.pipe.dag_creator

 	dingo.pipe.data_generation

 	dingo.pipe.default_settings

 	dingo.pipe.dingo_result

 	dingo.pipe.importance_sampling

 	dingo.pipe.main

 	dingo.pipe.nodes

 	dingo.pipe.nodes.generation_node

 	dingo.pipe.nodes.importance_sampling_node

 	dingo.pipe.nodes.merge_node

 	dingo.pipe.nodes.pe_summary_node

 	dingo.pipe.nodes.plot_node

 	dingo.pipe.nodes.sampling_node

 	dingo.pipe.parser

 	dingo.pipe.plot

 	dingo.pipe.sampling

 	dingo.pipe.utils

 	
 	ModuleMerger (class in dingo.core.nn.enets)

 	modulus_check() (in module dingo.gw.dataset.generate_dataset_dag)

 	multiply() (dingo.gw.transforms.gnpe_transforms.GNPEBase method)

N

 	
 	n_eff (dingo.core.result.Result property)

 	NewInterfaceWaveformGenerator (class in dingo.gw.waveform_generator.waveform_generator)

 	noise_std (dingo.gw.domains.Domain property)

 	(dingo.gw.domains.FrequencyDomain property), [1]

 	(dingo.gw.domains.PCADomain property)

 	(dingo.gw.domains.TimeDomain property)

 	
 	num_iterations (dingo.core.samplers.GNPESampler property), [1]

 	num_samples (dingo.core.result.Result property)

O

 	
 	output_dim (dingo.core.nn.enets.LinearProjectionRB property)

P

 	
 	parameter_mean_std() (dingo.gw.dataset.waveform_dataset.WaveformDataset method)

 	parameter_subset() (dingo.core.result.Result method)

 	(dingo.gw.result.Result method)

 	parameterize_asd_dataset() (in module dingo.gw.noise.synthetic.asd_parameterization)

 	parameterize_asds_parallel() (in module dingo.gw.noise.synthetic.asd_parameterization)

 	parameterize_single_psd() (in module dingo.gw.noise.synthetic.asd_parameterization)

 	parse_args() (in module dingo.core.density.unconditional_density_estimation)

 	(in module dingo.core.utils.pt_to_hdf5)

 	(in module dingo.gw.dataset.generate_dataset)

 	(in module dingo.gw.dataset.generate_dataset_dag)

 	(in module dingo.gw.importance_sampling.importance_weights)

 	(in module dingo.gw.inference.inference_pipeline)

 	(in module dingo.gw.noise.generate_dataset)

 	(in module dingo.gw.noise.synthetic.generate_dataset)

 	(in module dingo.gw.training.train_pipeline)

 	parse_settings_for_raw_data() (in module dingo.gw.data.data_preparation)

 	PCADomain (class in dingo.gw.domains)

 	pe_spins() (in module dingo.gw.conversion.spin_conversion)

 	perform_scheduler_step() (in module dingo.core.utils.torchutils)

 	perturb() (dingo.gw.transforms.gnpe_transforms.GNPEBase method)

 	pesummary_prior (dingo.gw.result.Result property), [1]

 	pesummary_samples (dingo.gw.result.Result property), [1]

 	PESummaryNode (class in dingo.pipe.nodes.pe_summary_node)

 	phase_marginalization_kwargs (dingo.gw.result.Result property)

 	plot_corner() (dingo.core.result.Result method)

 	(dingo.gw.result.Result method)

 	
 	plot_corner_multi() (in module dingo.core.utils.plotting)

 	plot_diagnostics() (in module dingo.gw.importance_sampling.diagnostics)

 	plot_log_probs() (dingo.core.result.Result method)

 	(dingo.gw.result.Result method)

 	plot_posterior_slice() (in module dingo.gw.importance_sampling.diagnostics)

 	plot_posterior_slice2d() (in module dingo.gw.importance_sampling.diagnostics)

 	plot_weights() (dingo.core.result.Result method)

 	(dingo.gw.result.Result method)

 	PlotNode (class in dingo.pipe.nodes.plot_node)

 	PostCorrectGeocentTime (class in dingo.gw.transforms.inference_transforms)

 	PosteriorModel (class in dingo.core.models.posterior_model)

 	prepare_log_prob() (in module dingo.gw.inference.inference_pipeline)

 	prepare_training_new() (in module dingo.gw.training.train_pipeline)

 	prepare_training_resume() (in module dingo.gw.training.train_pipeline)

 	print_info() (dingo.core.utils.trainutils.LossInfo method)

 	print_summary() (dingo.core.result.Result method)

 	(dingo.gw.result.Result method)

 	print_validation_summary() (dingo.gw.SVD.SVDBasis method)

 	priors (dingo.pipe.importance_sampling.ImportanceSamplingInput property)

 	(dingo.pipe.main.MainInput property)

 	ProjectOntoDetectors (class in dingo.gw.transforms)

 	(class in dingo.gw.transforms.detector_transforms)

 	psd_data_path() (in module dingo.gw.noise.utils)

 	pvalue_min (dingo.core.utils.gnpeutils.IterationTracker property)

R

 	
 	random_injection() (dingo.gw.injection.Injection method), [1]

 	reconstruct_psds_from_parameters() (in module dingo.gw.noise.synthetic.utils)

 	recursive_check_dicts_are_equal() (in module dingo.core.utils.misc)

 	recursive_hdf5_load() (in module dingo.core.dataset)

 	recursive_hdf5_save() (in module dingo.core.dataset)

 	RenameKey (class in dingo.core.transforms)

 	RepackageStrainsAndASDS (class in dingo.gw.transforms)

 	(class in dingo.gw.transforms.noise_transforms)

 	reproduction_dict (dingo.gw.transforms.parameter_transforms.SampleExtrinsicParameters property)

 	request_cpus_importance_sampling (dingo.pipe.main.MainInput property)

 	reset_event() (dingo.core.result.Result method)

 	(dingo.gw.result.Result method)

 	ResetSample (class in dingo.gw.transforms.inference_transforms)

 	
 	resubmit_condor_job() (in module dingo.core.utils.condor_utils)

 	Result (class in dingo.core.result)

 	(class in dingo.gw.result), [1]

 	result_file (dingo.pipe.nodes.importance_sampling_node.ImportanceSamplingNode property)

 	(dingo.pipe.nodes.merge_node.MergeNode property)

 	(dingo.pipe.nodes.sampling_node.SamplingNode property)

 	rotate_y() (in module dingo.gw.waveform_generator.frame_utils)

 	rotate_z() (in module dingo.gw.waveform_generator.frame_utils)

 	run_sampler() (dingo.core.samplers.GNPESampler method)

 	(dingo.core.samplers.Sampler method), [1]

 	(dingo.gw.inference.gw_samplers.GWSampler method)

 	(dingo.pipe.importance_sampling.ImportanceSamplingInput method)

 	(dingo.pipe.sampling.SamplingInput method)

 	RuntimeLimits (class in dingo.core.utils.trainutils)

S

 	
 	sample() (dingo.core.models.posterior_model.PosteriorModel method)

 	(dingo.core.nn.nsf.FlowWrapper method)

 	(dingo.gw.noise.synthetic.asd_sampling.KDE method)

 	sample_and_log_prob() (dingo.core.nn.nsf.FlowWrapper method)

 	sample_efficiency (dingo.core.result.Result property)

 	sample_frequencies (dingo.gw.domains.FrequencyDomain property)

 	sample_frequencies_torch (dingo.gw.domains.FrequencyDomain property)

 	sample_frequencies_torch_cuda (dingo.gw.domains.FrequencyDomain property)

 	sample_proxies() (dingo.gw.transforms.gnpe_transforms.GNPEBase method)

 	sample_random_asds() (dingo.gw.noise.asd_dataset.ASDDataset method)

 	sample_synthetic_phase() (dingo.gw.result.Result method), [1]

 	SampleDataset (class in dingo.core.density.unconditional_density_estimation)

 	SampleExtrinsicParameters (class in dingo.gw.transforms)

 	(class in dingo.gw.transforms.parameter_transforms)

 	SampleNoiseASD (class in dingo.gw.transforms)

 	(class in dingo.gw.transforms.noise_transforms)

 	Sampler (class in dingo.core.samplers)

 	samples (dingo.core.samplers.Sampler attribute)

 	samples_file (dingo.pipe.nodes.sampling_node.SamplingNode property)

 	sampling_importance_resampling() (dingo.core.result.Result method)

 	(dingo.gw.result.Result method)

 	sampling_rate (dingo.gw.domains.Domain property)

 	(dingo.gw.domains.FrequencyDomain property), [1]

 	(dingo.gw.domains.TimeDomain property)

 	SamplingInput (class in dingo.pipe.sampling)

 	SamplingNode (class in dingo.pipe.nodes.sampling_node)

 	save_hdf5() (dingo.pipe.data_generation.DataGenerationInput method)

 	save_model() (dingo.core.models.posterior_model.PosteriorModel method)

 	(in module dingo.core.utils.trainutils)

 	
 	save_training_injection() (in module dingo.gw.temporary_debug_utils)

 	search_parameter_keys (dingo.core.result.Result property)

 	SelectStandardizeRepackageParameters (class in dingo.gw.transforms)

 	(class in dingo.gw.transforms.parameter_transforms)

 	SEOBNRv4PHM_maximum_starting_frequency() (in module dingo.gw.waveform_generator.waveform_generator)

 	set_new_range() (dingo.gw.domains.FrequencyDomain method), [1]

 	set_requires_grad_flag() (in module dingo.core.utils.torchutils)

 	set_train_transforms() (in module dingo.gw.training)

 	(in module dingo.gw.training.train_builders)

 	setup_arguments() (dingo.pipe.nodes.generation_node.GenerationNode method)

 	setup_logger() (in module dingo.core.utils.logging_utils)

 	setup_mode_array() (dingo.gw.waveform_generator.waveform_generator.WaveformGenerator method)

 	(dingo.gw.waveform_generator.WaveformGenerator method)

 	signal() (dingo.gw.injection.GWSignal method)

 	signal_m() (dingo.gw.injection.GWSignal method)

 	spin_conversion_phase (dingo.gw.waveform_generator.waveform_generator.WaveformGenerator property)

 	split() (dingo.core.result.Result method)

 	(dingo.gw.result.Result method)

 	split_dataset_into_train_and_test() (in module dingo.core.utils.torchutils)

 	split_off_extrinsic_parameters() (in module dingo.gw.prior)

 	split_time_segments() (in module dingo.gw.noise.generate_dataset_dag)

 	StandardizeParameters (class in dingo.gw.transforms.parameter_transforms)

 	StationaryGaussianGWLikelihood (class in dingo.gw.likelihood)

 	StoreBoolean (class in dingo.pipe.parser)

 	sum_contributions_m() (in module dingo.gw.waveform_generator.waveform_generator)

 	SVDBasis (class in dingo.gw.SVD)

 	synthetic_phase_kwargs (dingo.gw.result.Result property)

T

 	
 	t_ref (dingo.gw.result.Result property)

 	taper_td_modes_for_SEOBRNRv5_extra_time() (in module dingo.gw.waveform_generator.wfg_utils)

 	taper_td_modes_in_place() (in module dingo.gw.waveform_generator.wfg_utils)

 	td_modes_to_fd_modes() (in module dingo.gw.waveform_generator.wfg_utils)

 	test_dimensions() (dingo.core.nn.enets.LinearProjectionRB method)

 	test_epoch() (in module dingo.core.models.posterior_model)

 	time_delay_from_geocenter() (in module dingo.gw.transforms.detector_transforms)

 	time_marginalization_kwargs (dingo.gw.result.Result property)

 	time_translate_data() (dingo.gw.domains.Domain method)

 	(dingo.gw.domains.FrequencyDomain method), [1]

 	(dingo.gw.domains.TimeDomain method)

 	TimeDomain (class in dingo.gw.domains)

 	TimeShiftStrain (class in dingo.gw.transforms.detector_transforms)

 	to_dictionary() (dingo.core.dataset.DingoDataset method)

 	to_file() (dingo.core.dataset.DingoDataset method)

 	
 	to_hdf5() (dingo.core.samplers.Sampler method), [1]

 	to_result() (dingo.core.samplers.GNPESampler method)

 	(dingo.core.samplers.Sampler method), [1]

 	(dingo.gw.inference.gw_samplers.GWSampler method)

 	torch_detach_to_cpu() (in module dingo.core.utils.torchutils)

 	ToTorch (class in dingo.gw.transforms.inference_transforms)

 	train() (dingo.core.models.posterior_model.PosteriorModel method)

 	train_condor() (in module dingo.gw.training.train_pipeline_condor)

 	train_epoch() (in module dingo.core.models.posterior_model)

 	train_local() (in module dingo.gw.training.train_pipeline)

 	train_stages() (in module dingo.gw.training.train_pipeline)

 	train_svd_basis() (in module dingo.gw.dataset.generate_dataset)

 	train_unconditional_density_estimator() (in module dingo.core.density.unconditional_density_estimation)

 	train_unconditional_flow() (dingo.core.result.Result method)

 	(dingo.gw.result.Result method)

U

 	
 	unconditional_model (dingo.core.samplers.Sampler attribute)

 	UnpackDict (class in dingo.gw.transforms)

 	(class in dingo.gw.transforms.general_transforms)

 	update() (dingo.core.utils.gnpeutils.IterationTracker method)

 	(dingo.core.utils.trainutils.AvgTracker method)

 	(dingo.core.utils.trainutils.LossInfo method)

 	(dingo.gw.domains.Domain method)

 	(dingo.gw.domains.FrequencyDomain method), [1]

 	
 	update_data() (dingo.gw.domains.FrequencyDomain method), [1]

 	update_domain() (dingo.gw.dataset.waveform_dataset.WaveformDataset method)

 	(dingo.gw.dataset.WaveformDataset method)

 	(dingo.gw.noise.asd_dataset.ASDDataset method)

 	update_prior() (dingo.gw.result.Result method), [1]

 	update_timer() (dingo.core.utils.trainutils.LossInfo method)

W

 	
 	WaveformDataset (class in dingo.gw.dataset)

 	(class in dingo.gw.dataset.waveform_dataset)

 	WaveformGenerator (class in dingo.gw.waveform_generator)

 	(class in dingo.gw.waveform_generator.waveform_generator)

 	whiten (dingo.gw.injection.GWSignal property)

 	WhitenAndScaleStrain (class in dingo.gw.transforms)

 	(class in dingo.gw.transforms.noise_transforms)

 	
 	WhitenFixedASD (class in dingo.gw.transforms.noise_transforms)

 	WhitenStrain (class in dingo.gw.transforms.noise_transforms)

 	window_factor (dingo.gw.domains.FrequencyDomain property)

 	write_complete_config_file() (in module dingo.pipe.main)

 	write_history() (in module dingo.core.utils.trainutils), [1]

 	write_pesummary() (dingo.core.samplers.Sampler method)

 How to use asimov with dingo

How to use asimov with dingo

GW150914 example

If we want to run a series of analyses on many different events, asimov is a
tool which will allow us to do this. To read more in depth about asimov, see
https://asimov.docs.ligo.org/asimov/master/getting-started.html. In this tutorial,
we will go through how to analyze one gravitational wave event (GW150914) with DINGO
through asimov. We will also discuss how to add more events to the ledger if we
want to analyze a large number of events.

The main principle behind asimov is that events are added to a ledger from which
the settings can be read. There are three levels of settings to the ledger. First,
is the “project settings” which will are common to all events which are being analyzed.
As an example, this could include the number of CPUs to use for the analysis.
Next, are the “event settings” which are common to all analyses of a certain event. For example,
this could be the trigger time of the analysis or the filepath to the calibration envelope.
Finally, we have the analysis settings which are specific to each inference run. For example,
this could be the network you want to use to analyze the event.

The first step is to start a project which can be done with

mkdir project_tutorial
cd project_tutorial
asimov init "init message"

If you type ls -a this should now show the following directory structure

asimov.log .asimov checkouts logs results working

The asimov.log is where the log of all the asimov commands that were run for the
project are stored. The checkouts folder will contain .ini files for the run. We will
see how to populate this folder with asimov in the next section. The other important folder
is the working folder which will contain the results of the dingo runs.

While the project has now been started, currently there are no settings applied to
the project. To apply some settings, download the project_dingo.yaml file from
https://github.com/dingo-gw/dingo/tree/main/examples/asimov and apply them with:

asimov apply -f project_dingo.yaml

Now that some basic project settings have been added, we can start to analyze events.
Let’s add the GW150914 event to the ledger. You can download the event_dingo.yaml
file from https://github.com/dingo-gw/dingo/tree/main/examples/asimov and apply it
with

asimov apply -f ../../event_dingo.yaml

Finally, we can apply the analysis settings to GW150914. You can
download a sample analysis_dingo.yaml file from
https://github.com/dingo-gw/dingo/tree/main/examples/asimov.
You will need to change this yaml file to point to the location
of your network .pt files.

asimov apply -f ../../analysis_dingo.yaml -e GW150914_095045

We have now applied all the settings to GW150914 and are ready
to begin the asimov run! Start by creating the .ini file using

asimov manage build

This should create a .ini file in the checkouts subdirectory
which will be populated by the settings we applied above. Check
that the trigger time, event name and outdir are the same as
we specified. We can now submit the jobs. This has two steps. First,
the dag files are created using dingo_pipe based off the .ini
files created using the asimov manage build command. Next the
dag files will be submitted to the cluster. To do this run

asimov manage submit

Now you should be all done! Check the output of the working directory
to ensure that log files are being created in accordance with
starting a dingo_pipe run. You can run

asimov monitor

to see the status of the runs.

Running on LIGO data

If you would like to run on LVK data, you will need to
authenticate with your LVK credentials. This involves a
series of steps which are summarized here. First,
you will need to install a few extra packages which
are not shipped with default DINGO. To do this,
run

python -m pip install kerberos paramiko M2Crypto
python -m pip install python-nds2-client
conda install python-ldas-tools-framecpp==2.6.14

Then, before running asimov manage build make sure to run

export GWDATAFIND_SERVER=datafind.igwn.org

You will now need to authenticate with scitokens and
store your credentials in the condor vault. To do this
run the following commands and follow the prompts.
They will ask for your LIGO credentials.

export HTGETTOKENOPTS="-a vault.ligo.org -i igwn"
condor_vault_storer -v igwn
kinit
htgettoken

Now you can run condor_store_cred query-oauth and you should
see there are two credentials igwn.top and igwn.use. If
you only see one credential, contact your sys admin or
upgrade to the latest version of condor.

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Dingo

 		
 Installation

 		
 Standard

 		
 Pip

 		
 Conda

 		
 Development

 		
 Documentation

 		
 Overview

 		
 Basic workflow

 		
 Command-line interface

 		
 Summary of commands

 		
 File types

 		
 GNPE

 		
 Quickstart tutorial

 		
 Generate training data

 		
 Waveforms

 		
 Noise ASDs

 		
 Training

 		
 Inference

 		
 Toy Example

 		
 Step 1 Generating a waveform dataset

 		
 Step 2 Generating the Amplitude Spectral Density (ASD) dataset

 		
 Step 3 Training the network

 		
 Step 4 Doing Inference

 		
 NPE Model (production)

 		
 Step 1 Generating a Waveform Dataset

 		
 Step 2 Generating an ASD dataset

 		
 Step 3 Training the network

 		
 Step 4 Doing Inference

 		
 GNPE model (production)

 		
 Step 1 Generating a Waveform Dataset

 		
 Step 2 Generating an ASD dataset

 		
 Step 3 Training the network

 		
 Step 4 Doing Inference

 		
 Inference on an injection

 		
 Introduction to neural posterior estimation

 		
 Normalizing flows

 		
 Training

 		
 Code design

 		
 Reproducibility

 		
 Settings

 		
 Random seeds

 		
 Unique identifiers for models

 		
 Code re-use

 		
 core and gw packages

 		
 Data transforms

 		
 Data structures

 		
 Command-line scripts

 		
 Generating waveforms

 		
 Data domain

 		
 FrequencyDomain

 		
 Waveform generator

 		
 WaveformGenerator

 		
 Waveform modes

 		
 Building a waveform dataset

 		
 The WaveformDataset class

 		
 WaveformDataset

 		
 Generating a simple dataset

 		
 Automated dataset construction

 		
 generate_dataset()

 		
 Configuration

 		
 Command-line interface

 		
 Data pre-processing

 		
 GW transform sequence

 		
 Extrinsic parameters

 		
 Detector waveforms

 		
 Noise

 		
 Output

 		
 Building the transforms

 		
 set_train_transforms()

 		
 Detector noise

 		
 ASD dataset

 		
 Generating an ASDDataset

 		
 dingo_generate_asd_dataset

 		
 dingo_generate_synthetic_asd_dataset

 		
 Data conditioning

 		
 Neural network architecture

 		
 Neural spline flow with SVD compression

 		
 Embedding network

 		
 Flow

 		
 Training

 		
 Settings file

 		
 data_settings

 		
 model

 		
 training

 		
 local

 		
 Command-line scripts

 		
 dingo_train

 		
 dingo_train_condor

 		
 Output

 		
 Modifying a checkpoint

 		
 Inference

 		
 The Sampler class

 		
 GWSampler

 		
 Injections

 		
 Injection

 		
 GNPE

 		
 Description of method

 		
 Gibbs + NPE

 		
 Group-equivariant NPE

 		
 Usage

 		
 Training

 		
 Inference

 		
 The GNPESampler class

 		
 GNPESampler

 		
 The Result class

 		
 Result

 		
 Result.get_samples_bilby_phase()

 		
 Result.importance_sample()

 		
 Result.merge()

 		
 Result.parameter_subset()

 		
 Result.pesummary_prior

 		
 Result.pesummary_samples

 		
 Result.plot_corner()

 		
 Result.plot_log_probs()

 		
 Result.plot_weights()

 		
 Result.print_summary()

 		
 Result.reset_event()

 		
 Result.sample_synthetic_phase()

 		
 Result.sampling_importance_resampling()

 		
 Result.