
dingo-gw

Stephen Green

Apr 07, 2024

GETTING STARTED

1 Installation 3

2 Overview 5

3 Quickstart tutorial 7

4 Toy Example 9

5 NPE Model (production) 17

6 GNPE model (production) 21

7 Inference on an injection 25

8 Introduction to neural posterior estimation 27

9 Code design 29

10 Generating waveforms 31

11 Building a waveform dataset 41

12 Data pre-processing 49

13 Detector noise 55

14 Neural network architecture 61

15 Training 63

16 Inference 69

17 GNPE 73

18 The Result class 79

19 dingo_pipe 87

20 dingo 91

21 References 173

22 Contact 175

i

23 Indices and tables 177

Bibliography 179

Python Module Index 181

Index 183

ii

dingo-gw

Dingo (Deep Inference for Gravitational-wave Observations) is a Python program for analyzing gravitational wave
data using neural posterior estimation. It dramatically speeds up inference of astrophysical source parameters from data
measured at gravitational-wave observatories. Dingo aims to enable the routine use of the most advanced theoretical
models in analysing data, to make rapid predictions for multi-messenger counterparts, and to do so in the context of
sensitive detectors with high event rates.

The basic approach of Dingo is to train a neural network to represent the Bayesian posterior, conditioned on data.
This enables amortized inference: when new data are observed, they can be plugged in and results obtained in a small
amount of time. Tasks handled by Dingo include

• building training datasets;

• training normalizing flows to estimate the posterior density;

• performing inference on real or simulated data; and

• verifying and correcting model results using importance sampling.

As training a network from scratch can be expensive, we intend to also distribute trained networks that can be used
directly for inference. These can be used with dingo_pipe to automate analysis of gravitational wave events.

GETTING STARTED 1

dingo-gw

2 GETTING STARTED

CHAPTER

ONE

INSTALLATION

1.1 Standard

1.1.1 Pip

To install using pip, run the following within a suitable virtual environment:

pip install dingo-gw

This will install Dingo as well as all of its requirements, which are listed in pyproject.toml.

1.1.2 Conda

Dingo is also available from the conda-forge repository. To install using conda, first activate a conda environment, and
then run

conda install -c conda-forge dingo-gw

1.2 Development

If you would like to make changes to Dingo, or to contribute to its development, you should install Dingo from source.
To do so, first clone this repository:

git clone git@github.com:dingo-gw/dingo.git

Next create a virtual environment for Dingo, e.g.,

python3 -m venv dingo-venv
source dingo-venv/bin/activate

This creates and activates a venv for Dingo called dingo-venv. In this virtual environment, install Dingo:

cd dingo
pip install -e ."[dev]"

This command installs an editable version of Dingo, meaning that any changes to the Dingo source are reflected im-
mediately in the installation. The inclusion of dev installs extra packages needed for development (code formatting,
compiling documentation, etc.)

3

https://github.com/dingo-gw/dingo/blob/main/pyproject.toml
https://conda-forge.org
https://docs.python.org/3/library/venv.html

dingo-gw

1.2.1 Documentation

To build the documentation, first generate the API documentation using autodoc:

cd docs
sphinx-apidoc -o source ../dingo

This will create dingo.*.rst and modules.rst files in source/. These correspond to the various modules and are
constructed from docstrings.

To finally compile the documentation, run

make html

This creates a directory build/ containing HTML documentation. The main index is at build/html/index.html.

To use the autodoc feature, which works for pycharm and numpy docstrings, insert in a .rst file, e.g.,

.. autofunction:: dingo.core.utils.trainutils.write_history`

This will render as

dingo.core.utils.trainutils.write_history(log_dir, epoch, train_loss, test_loss, learning_rates,
aux=None, filename='history.txt')

Writes losses and learning rate history to csv file.

Parameters

• log_dir (str) – directory containing the history file

• epoch (int) – epoch

• train_loss (float) – train_loss of epoch

• test_loss (float) – test_loss of epoch

• learning_rates (list) – list of learning rates in epoch

• aux (list = []) – list of auxiliary information to be logged

• filename (str = 'history.txt') – name of history file

Cleanup

To remove generated docs, execute

make clean
rm source/dingo.* source/modules.rst

4 Chapter 1. Installation

https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html

CHAPTER

TWO

OVERVIEW

Dingo performs gravitational-wave (GW) parameter estimation using neural posterior estimation. The basic idea is to
train a neural network (a normalizing flow) to represent the Bayesian posterior distribution 𝑝(𝜃|𝑑) for GW parameters
𝜃 given observed data 𝑑. Training can take some time (typically, a week for a production-level model) but once trained,
inference is very fast (just a few seconds).

2.1 Basic workflow

The basic workflow for using Dingo is as follows:

1. Prepare training data. This consists of pairs of intrinsic parameters and waveform polarizations, as well as
noise PSDs. Training parameters are drawn from the prior distribution, and waveforms are simulated using a
waveform model.

2. Train a model. Build a neural network and simulate data sets (noisy waveforms in detectors). Train the model
to infer parameters based on the data.

3. Perform inference on new data using the trained model.

In many cases, a user may have downloaded a pre-trained model. If so, there is no need to carry out the first two steps,
and one may instead skip to step 3.

2.2 Command-line interface

In most cases, we expect Dingo to be called from the command line. Dingo commands begin with the prefix dingo_.
There can be a large number of configurations options for many tasks, so in such cases, rather than specify all settings
as arguments, Dingo commands take a single YAML or INI file containing all settings. As described in the quickstart
tutorial, it is best to begin with settings files provided in the examples/ folder, modifying them as necessary.

2.2.1 Summary of commands

Here we provide a list of key user commands along with brief descriptions. The commands for carrying out the main
tasks above are

Command Description
dingo_generate_dataset Generate a training dataset of waveform polarizations.
dingo_generate_ASD_dataset Generate a training dataset of detector noise ASDs.
dingo_train Build and train a neural network.
dingo_pipe Perform inference on data (real or simulated), starting from an INI file.

5

https://github.com/dingo-gw/dingo/tree/main/examples

dingo-gw

Building a training dataset and training a model can be very expensive tasks. We therefore expect these to be frequently
run on clusters, and for this reason provided HTCondor versions of these commands (note that dingo_pipe is already
HTCondor-compatible):

Command Description
dingo_generate_dataset_dag HTCondor version of dingo_generate_dataset.
dingo_train_condor HTCondor version of dingo_train.

Finally, there are several utility commands that are useful for working with Dingo-produced files:

Command Description
dingo_ls Inspect a file produced by Dingo and print a summary.
dingo_append_training_stage Modify the training plan of a model checkpoint.
dingo_pt_to_hdf5 Convert a trained Dingo model from a PyTorch pickle .pt file to HDF5.

Hint: The dingo_ls command is very useful for inspecting Dingo files. It will print all settings that went in to
producing the file, as well as some derived quantities.

2.2.2 File types

As noted above, most Dingo commands take a YAML file to specify configuration options (except for dingo_pipe,
which uses an INI file, as is standard for LVK parameter estimation). When run, these commands generate data, which
is usually stored in HDF5 files. One exception is when training a neural network. This saves the network weights using
the PyTorch .pt format. However, primarily for LVK use, dingo_pt_to_hdf5 can convert the weights of a trained
model to a HDF5 file.

Important: In all cases, Dingo will save the YAML file settings within the final output file. This is needed for
downstream tasks and for maintaining reproducibility.

2.3 GNPE

A slightly more complicated workflow occurs when using GNPE. GNPE is an algorithm that combines physical sym-
metries with Gibbs sampling to significantly improve results. When using GNPE, however, it is necessary to train two
networks—one main (conditional) network that will be repeatedly sampled during Gibbs sampling and one smaller
network used to initialize the Gibbs sampler. At inference time, dingo_pipemust be pointed to both of these networks.
See the section on GNPE usage for further details.

6 Chapter 2. Overview

https://htcondor.readthedocs.io/en/latest/

CHAPTER

THREE

QUICKSTART TUTORIAL

To learn to use Dingo, we recommend starting with the examples provided in the examples/ folder. The YAML files
contained in this directory (and subdirectories) contain configuration settings for the various Dingo tasks (constructing
training data, training networks, and performing inference). These files should be provided as input to the command-
line scripts, which then run Dingo and save output files. These output files contain as metadata the settings in the
YAML files, and they may usually be inspected by running dingo_ls.

After configuring the settings files, the scripts may be used as follows, assuming the Dingo venv is active.

3.1 Generate training data

3.1.1 Waveforms

To generate a waveform dataset for training, execute

dingo_generate_dataset --settings_file waveform_dataset_settings.yaml --num_processes N -
→˓-out_file waveform_dataset.hdf5

where N is the number of processes you would like to use to generate the waveforms in parallel. This saves the dataset
of waveform polarizations in the file waveform_dataset.hdf5 (typically compressed using SVD, depending on con-
figuration).

One can use dingo_generate_dataset_dag to set up a condor DAG for generating waveforms on a cluster. This is
typically useful for slower waveform models.

3.1.2 Noise ASDs

Training also requires a dataset of noise ASDs, which are sampled randomly for each training sample. To generate this
dataset based on noise observed during a run, execute

dingo_generate_ASD_dataset --data_dir data_dir --settings_file asd_dataset_settings.yaml

This will download data from GWOSC and create a /tmp directory, in which the estimated PSDs are stored. Subse-
quently, these are collected together into a final .hdf5 ASD dataset. If no settings_file is passed, the script will
attempt to use the default one data_dir/asd_dataset_settings.yaml.

7

https://github.com/dingo-gw/dingo/tree/main/examples
https://www.gw-openscience.org

dingo-gw

3.2 Training

With a waveform dataset and ASD dataset(s), one can train a neural network. Configure the train_settings.yaml
file to point to these datasets, and run

dingo_train --settings_file train_settings.yaml --train_dir train_dir

This will configure the network, train it, and store checkpoints, a record of the history, and the final network in the
directory train_dir. Alternatively, to resume training from a checkpoint file, run

dingo_train --checkpoint model.pt --train_dir train_dir

If using CUDA on a machine with several GPUs, be sure to first select the desired GPU number using the
CUDA_VISIBLE_DEVICES environment variable. If using a cluster, Dingo can be trained using dingo_train_condor.

Example training files can be found under examples/training. train_settings_toy.yaml and
train_settings_production.yaml train a flow to estimate the full posterior of the event conditioned on
the time of coalescence in the detectors. The “toy” label is to indicate this should NOT be used for production but
rather to get a feel for the Dingo pipeline. The production settings contain tested settings. Note that depending
on the waveform model and event, these may need to occasionally be tuned. train_settings_init_toy.yaml
and train_settings_init_production.yaml train flows to estimate the time of coalescence in the individual
detectors. These two networks are needed to use GNPE. This is the preferred and most tested way of using Dingo.

Alternatively, the train_settings_no_gnpe_toy.yaml and train_settings_no_gnpe_production.yaml con-
tain settings to train a network without the GNPE step. Note the lack of a data/gnpe_time_shifts option. While
this is not recommended for production, it is still pedagogically useful and is good for prototyping new ideas or doing
a less expensive training.

3.3 Inference

Once a Dingo model is trained, inference for real events can be performed using dingo_pipe. There are 3 main inference
steps, downloading the data, running Dingo on this data and finally running importance sampling. The basic idea is to
create a .ini file which contains the filepaths of the Dingo networks trained above and the segment of data to analyze.
An example .ini file can be found under examples/pipe/GW150914.ini.

To do inference, cd into the directory with the .ini file and run

dingo_pipe GW150914.ini

8 Chapter 3. Quickstart tutorial

CHAPTER

FOUR

TOY EXAMPLE

The goal of the following tutorial is to take a user from start to finish analyzing GW150914 using dingo.

Caution: This is only a toy example which is useful for testing on a local machine. This is NOT meant be used
for production gravitational wave analyses.

There are 4 main steps:

1. Generate the waveform dataset

2. Generate the ASD dataset

3. Train the network

4. Do inference

In this tutorial as well as the npe model and gnpe model the following file structure will be employed

toy_npe_model/

config files
waveform_dataset_settings.yaml
asd_dataset_settings.yaml
train_settings.yaml
GW150914.ini

training_data/
waveform_dataset.hdf5
asd_dataset/ # Contains the asd_dataset.hdf5 and also temp files for asd␣

→˓generation

training/
model_050.pt
model_stage_0.pt
model_latest.pt
history.txt
etc...

outdir_GW150914/
dingo_pipe output

The config files which are the only ones which need to be edited are contained in the top level directory. In the next
few sections these config files will be explained. To download sample config files, please visit https://github.com/

9

https://github.com/dingo-gw/dingo/tree/main/examples
https://github.com/dingo-gw/dingo/tree/main/examples

dingo-gw

dingo-gw/dingo/tree/main/examples. In this tutorial the toy_npe_model folder will be used.

4.1 Step 1 Generating a waveform dataset

After downloading the files for the tutorial first run

cd toy_npe_model/
mkdir training_data
mkdir training

to set up the file structure. Then run

dingo_generate_dataset --settings waveform_dataset_settings.yaml --out_file training_
→˓data/waveform_dataset.hdf5

which will create a dingo.gw.waveform_generator.waveform_generator.WaveformGenerator object and
store it at the location provided with --out_file. For convenience, here is the waveform dataset file

domain:
type: FrequencyDomain
f_min: 20.0
f_max: 1024.0
delta_f: 0.25 # Expressions like 1.0/8.0 would require eval and are not supported

waveform_generator:
approximant: IMRPhenomD
f_ref: 20.0
f_start: 15.0 # Optional setting useful for EOB waveforms. Overrides f_min when␣
→˓generating waveforms.

Dataset only samples over intrinsic parameters. Extrinsic parameters are chosen at␣
→˓train time.
intrinsic_prior:
mass_1: bilby.core.prior.Constraint(minimum=10.0, maximum=80.0)
mass_2: bilby.core.prior.Constraint(minimum=10.0, maximum=80.0)
chirp_mass: bilby.gw.prior.UniformInComponentsChirpMass(minimum=15.0, maximum=100.0)
mass_ratio: bilby.gw.prior.UniformInComponentsMassRatio(minimum=0.125, maximum=1.0)
phase: default
chi_1: bilby.gw.prior.AlignedSpin(name='chi_1', a_prior=Uniform(minimum=0, maximum=0.9))
chi_2: bilby.gw.prior.AlignedSpin(name='chi_2', a_prior=Uniform(minimum=0, maximum=0.9))
theta_jn: default
Reference values for fixed (extrinsic) parameters. These are needed to generate a␣
→˓waveform.
luminosity_distance: 100.0 # Mpc
geocent_time: 0.0 # s

Dataset size
num_samples: 10000

compression: None

The file waveform_dataset_settings.yaml contains four sections: domain, waveform_generator,
intrinsic_prior, and compression. The domain section defines the settings for storing the waveform.

10 Chapter 4. Toy Example

https://github.com/dingo-gw/dingo/tree/main/examples
https://github.com/dingo-gw/dingo/tree/main/examples

dingo-gw

Note the type attribute; this does not refer to the native domain of the waveform model, but rather to the internal
dingo.gw.domains.Domain class. This allows the use of time domain waveform models, which are transformed into
Fourier domain before being passed to the network. Currently, only the dingo.gw.domains.FrequencyDomain class
is supported for training the network. It is sometimes advisable to generate waveforms with a higher f_max and then
truncate them at a lower f_max for training due to issues with generating short waveforms for some of the waveform
models implemented in LALSuite’s LALSimulation package (https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/).

The waveform_generator section specifies the approximant attribute. At present any waveform model, aka
approximant, that is callable through LALSimulation’s SimInspiralFD API can be used to generate waveforms for
dingo via the dingo.gw.waveform_generator.waveform_generator.WaveformGenerator module (see gener-
ating_waveforms).

The intrinsic_prior section is based on Bilby’s prior module. Default values can be found in dingo.gw.prior.
Two priors to note are the chirp_mass and mass_ratio, whose minimum values are set to 15.0 and 0.125, respectively.
Extending these priors towards lower chirp masses or more extreme mass-ratios may lead to poor performance of the
embedding network and normalizing flow during training and would require changes to the network setup. Note that
the luminosity_distance and geocent_time are defined as constants to generate the waveform at a fixed reference
point.

The compression section can be set to None for testing purposes. For a practical example of how it is used, see the next
tutorial.

4.2 Step 2 Generating the Amplitude Spectral Density (ASD) dataset

To generate an ASD dataset run

dingo_generate_asd_dataset --settings_file asd_dataset_settings.yaml --data_dir training_
→˓data/asd_dataset

This command will generate an dingo.gw.noise.asd_dataset.ASDDataset object in the form of an .hdf5 file,
which will be used later for training. The reason for specifying a folder instead of a file, as in the waveform dataset
example, is because some temporary data is downloaded to create Welch estimates of the ASD. This data can be
removed later, but it is sometimes useful for understanding how the ASDs were estimated. For convenience here is a
copy of the asd_dataset_settings.yaml file.

dataset_settings:
f_s: 4096
time_psd: 1024
T: 4
window:

roll_off: 0.4
type: tukey

time_gap: 0 # specifies the time skipped between to consecutive PSD estimates.␣
→˓If set < 0, the time segments overlap
num_psds_max: 1 # if set > 0, only a subset of all available PSDs will be used
detectors:

- H1
- L1

observing_run: O1

The asd_dataset_settings.yaml file includes several attributes. f_s is the sampling frequency in Hz, time_psd is
the length of time used for an ASD estimate, and T is the duration of each ASD segment. Thus, the value of time_psd/T
gives the number of segments analyzed to estimate one ASD. To avoid spectral leakage, a window is applied to each
segment. We use the standard window used in LVK analyses, a Tukey window with a roll off of 𝛼 = 0.4. The next

4.2. Step 2 Generating the Amplitude Spectral Density (ASD) dataset 11

https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/

dingo-gw

attribute, num_psds_max=1, defines the number of ASDs stored in the ASD dataset. For now, we will use only one.
See the next tutorial for a more advanced setup.

4.3 Step 3 Training the network

To train the network, first the paths to the correct datasets must be specfied

dingo_train --settings_file train_settings.yaml --train_dir training

While this file contains numerous settings that are discussed in training, we will cover the most significant ones here.
Again here is the file.

data:
waveform_dataset_path: training_data/waveform_dataset.hdf5 # Contains intrinsic␣

→˓waveforms
train_fraction: 0.95
window: # Needed to calculate window factor for simulated data
type: tukey
f_s: 4096
T: 4.0
roll_off: 0.4

detectors:
- H1
- L1

extrinsic_prior: # Sampled at train time
dec: default
ra: default
geocent_time: bilby.core.prior.Uniform(minimum=-0.10, maximum=0.10)
psi: default
luminosity_distance: bilby.core.prior.Uniform(minimum=100.0, maximum=1000.0)

ref_time: 1126259462.391
inference_parameters:
- chirp_mass
- mass_ratio
- chi_1
- chi_2
- theta_jn
- dec
- ra
- geocent_time
- luminosity_distance
- psi
- phase

Model architecture
model:
type: nsf+embedding
kwargs for neural spline flow
nsf_kwargs:
num_flow_steps: 5
base_transform_kwargs:
hidden_dim: 64

(continues on next page)

12 Chapter 4. Toy Example

dingo-gw

(continued from previous page)

num_transform_blocks: 5
activation: elu
dropout_probability: 0.0
batch_norm: True
num_bins: 8
base_transform_type: rq-coupling

kwargs for embedding net
embedding_net_kwargs:
output_dim: 128
hidden_dims: [1024, 512, 256, 128]
activation: elu
dropout: 0.0
batch_norm: True
svd:
num_training_samples: 1000
num_validation_samples: 100
size: 50

The first stage (and only) stage of training.
training:
stage_0:
epochs: 20
asd_dataset_path: training_data/asd_dataset/asds_O1.hdf5 # this should just contain␣

→˓a single fiducial ASD per detector for pretraining
freeze_rb_layer: True
optimizer:
type: adam
lr: 0.0001

scheduler:
type: cosine
T_max: 20

batch_size: 64

Local settings for training that have no impact on the final trained network.
local:
device: cpu # Change this to 'cuda' for training on a GPU.
num_workers: 6 # num_workers >0 does not work on Mac, see https://stackoverflow.com/

→˓questions/64772335/pytorch-w-parallelnative-cpp206
runtime_limits:
max_time_per_run: 36000
max_epochs_per_run: 30

checkpoint_epochs: 15

For training, several extrinsic_priors are set, which project the waveforms generated in step 1 onto the detector
network according to the specified priors. This is considerably cheaper than generating waveforms sampled from the
full intrinsic plus extrinsic prior in step 1.

Another crucial setting is inference_parameters. By default all the parameters described in dingo.gw.prior are
inferred. If a parameter needs to be marginalized over this parameter can be omitted from inference_parameters.

Essential settings for the model architecture (the neural spline flow and the embedding network) are as follows:
nsf_kwargs.num_flow_steps describes the number of flow transforms from the base distribution to the final dis-
tribution, while embedding_net_kwargs.hidden_dim defines the dimensions of the neural network’s hidden layer,
which selects the most important data features. Finally, embedding_net_kwargs.svd describes the settings of the

4.3. Step 3 Training the network 13

dingo-gw

SVD used as a pre-processing step before passing data vectors to the embedding network. For a production network,
these values should be much higher than those used in this tutorial.

Next, we turn to the training section. Here we only employ a single stage of training with settings provided under
the stage_0 attribute. This stage uses the training dataset generated in step 1 for 30 epochs. We also specify the
asd_dataset_path here, which was created in step 2.

Finally, the local settings section affects only parallelization during training and the device used. An important setting
here is num_workers, which determines how many PyTorch dataloader processes are spawned during training. If
training is too slow, a potential cause is a lack of workers to load data into the network. This can be identified if
the dataloader times in the dingo_train output exceed 100ms. The solution is generally to increase the number of
workers.

4.4 Step 4 Doing Inference

The final step is to do inference, for example on GW150914. To do this we will use dingo_pipe. For a local run execute:

dingo_pipe GW150914.ini

This calls dingo_pipe on an INI file that specifies the event to run on,

##
Job submission arguments
##

local = True
accounting = dingo
request-cpus-importance-sampling = 2

##
Sampler arguments
##

model = training/model_latest.pt
device = 'cpu'
num-samples = 5000
batch-size = 5000
recover-log-prob = false
importance-sample = false

##
Data generation arguments
##

trigger-time = GW150914
label = GW150914
outdir = outdir_GW150914
channel-dict = {H1:GWOSC, L1:GWOSC}
psd-length = 128
sampling-frequency = 2048.0
importance-sampling-updates = {'duration': 4.0}

##
(continues on next page)

14 Chapter 4. Toy Example

dingo-gw

(continued from previous page)

Plotting arguments
##

plot-corner = true
plot-weights = true
plot-log-probs = true

This will generate files which are described in dingo_pipe. To see the results, take a look in outdir_GW150914. We set
the flag importance-sample = False in the INI file, which disables importance sampling for this simple example.
Generally one would omit this (it defaults to True).

We can load and manipulate the data with the following code. For example, here we create a cornerplot

from dingo.gw.result import Result
result = Result(file_name="outdir_GW150914/result/GW150914_data0_1126259462-4_sampling.
→˓hdf5")
result.plot_corner()

Notice the results don’t look very promising, but this is expected as the settings used in this example are not enough
to warrant convergence. Dingo should also automatically generate a cornerplot which will be displayed under out-
dir_GW150914.

4.4. Step 4 Doing Inference 15

dingo-gw

16 Chapter 4. Toy Example

CHAPTER

FIVE

NPE MODEL (PRODUCTION)

We will now do a tutorial with higher profile settings. Note these are not the full production settings used for runs
since we are not using GNPE, but they should lead to decent results. Go to this tutorial for the full production network.
The steps are the essentially same as the toy example but with higher level settings. It is recommended to run this on a
cluster or GPU machine.

We can repeat the same first few steps from the previous tutorial with a couple differences. The file structure is mostly
the same but now there is an additional asd_dataset_fiducial which will be explained below.

npe_model/

config files
waveform_dataset_settings.yaml
asd_dataset_settings.yaml
asd_dataset_settings_fiducial.yaml
train_settings.yaml
GW150914.ini

training_data/
waveform_dataset.hdf5
asd_dataset_fiducial/ # Contains the asd_dataset.hdf5 and also temp files for␣

→˓asd generation
asd_dataset/ # Contains the asd_dataset.hdf5 and also temp files for asd␣

→˓generation

training/
model_050.pt
model_stage_0.pt
model_latest.pt
history.txt
etc...

outdir_GW150914/
dingo_pipe output

17

dingo-gw

5.1 Step 1 Generating a Waveform Dataset

Again the first step is to generate the necessary folders

cd npe_model
mkdir training_data
mkdir training

As before we run dingo_generate_dataset:

dingo_generate_dataset --settings waveform_dataset_settings.yaml --out_file training_
→˓data/waveform_dataset.hdf5

The waveform_dataset_settings.yaml settings file now includes a new attribute compression. This creates a
truncated singular value decomposition (SVD) of the waveform polarizations which is stored on disk as a compressed
representation of the dataset. The size attribute refers to the number of basis vectors included in the expansion of the
waveform. This can later be changed during training. When the compression phase is finished, the log will display the
mismatch between the decompressed waveform and generated waveform. You can also access these mismatch settings
by running dingo_ls on a generated waveform_dataset.hdf5 file. It will show multiple mismatches corresponding
to the number of basis vectors used to decompress the waveform. It is up to the user as to what type of mismatch is
acceptable, typically a maximum mismatch of 10−3 − 10−4 is recommended.

We could also generate the waveform dataset using a condor DAG on a cluster. To do this run

dingo_generate_dataset_dag --settings_file waveform_dataset_settings.yaml --out_file␣
→˓training_data/waveform_dataset.hdf5 --env_path $DINGO_VENV_PATH --num_jobs 4 --request_
→˓cpus 64 --request_memory 128000 --request_memory_high 256000

and then submit the generated DAG

condor_submit_dag condor/submit/dingo_generate_dataset_dagman_DATE.submit

where DATE is specified in the filename of the .submit file that was generated.

5.2 Step 2 Generating an ASD dataset

To generate an ASD dataset we can run the same command as in the previous tutorial.

dingo_generate_asd_dataset --settings_file asd_dataset_settings_fiducial.yaml --data_dir␣
→˓training_data/asd_dataset_fiducial -out_name training_data/asd_dataset_fiducial/asds_
→˓O1_fiducial.hdf5

However, this time, during training we will need two sets of ASDs. The first one will be fixed during the initial training
– this is the fiducial dataset generated above. This dataset will contain only a single ASD. The second ASDDataset
will contain many ASDs and is used during the fine tuning stage. The reason to use just one ASD during the first stage
is to allow the network to train in an easier inference setting. It should learn how to infer parameters in the presence of
that one ASD. However, during inference the ASD will be variable. Thus, in the second stage many ASDs are used so
that dingo learns the distribution of ASDs from the observing run. We find this split leads to an improvement in overall
performance. To generate this second dataset run

dingo_generate_asd_dataset --settings_file asd_dataset_settings.yaml --data_dir training_
→˓data/asd_dataset -out_name training_data/asd_dataset/asds_O1.hdf5

18 Chapter 5. NPE Model (production)

https://htcondor.readthedocs.io/en/latest/users-manual/dagman-workflows.html

dingo-gw

We can see that in asd_dataset_settings.yaml the num_psds_max attribute is set to 0 indicating that all possible
ASDs will be downloaded. If you want to decrease this, make sure that there are enough ASDs in the training set to
represent any possible data the dingo network will see. Typically this should be at least 1000, but of course more is
better.

5.3 Step 3 Training the network

Now we are ready for training. The command is analogous to the previous tutorial but the settings are increased to
production values. To run the training do

dingo_train --settings_file train_settings.yaml --train_dir training

Tip: If running on a machine with multiple GPUs make sure to specify the GPU by running export
CUDA_VISIBILE_DEVICES=GPU_NUM before running dingo_train

The main difference from the toy example in the network architecture is the size of the embedding network which is
described in model.embedding_net_kwargs.hidden_dims and the number of neural spline flow transforms de-
scribed in model.nsf_kwargs.num_flow_steps. These increase the depth of the network and the number/size of
the layers in the embedding network.

Notice, we are not inferring the phase parameter here as it is not listed below inference_parameters. However, we
do recover the phase in post processing. To see why and how this is done see synthetic phase

Also notice there are now two training stages stage_0 and stage_1. In stage_0 a fixed ASD is used and the reduced
basis layer is frozen. Then in stage_1 all ASDs are used and the reduced basis layer is unfrozen.

The main difference in the local settings is that the device is set to CUDA. Note if you have multiple GPUs on the
machine, you can select which GPU to use by running

Important: It is recommended to have at least 40 GB of GPU memory on the device. If there is not enough memory
on the machine, first try halving the batch_size. In this case one should also multiply the learning rate, lr, by 1√

2
.

If there is still not enough memory, consider reducing the number of hidden dimensions.

5.4 Step 4 Doing Inference

We can run inference with the same command as before

dingo_pipe GW150914.ini

There is just one difference from the previous example. It is possible to reweight the posterior to a new prior. Note
though, that the new prior must be a subset of the previous prior. Otherwise, the proposal distribution generated by
dingo will include regions from the new prior where the network has not been trained which will result in a low effective
sample size and lead to poor results. As an example see the prior-dict attribute in GW150914.ini.

5.3. Step 3 Training the network 19

dingo-gw

20 Chapter 5. NPE Model (production)

CHAPTER

SIX

GNPE MODEL (PRODUCTION)

This tutorial has the highest profile settings and is the one typically used for production use. The main difference from
the NPE tutorial is that here we are now using GNPE (group neural posterior estimation). The data generation is exactly
the same as the previous tutorial, but we repeat it here, for completeness.

The file structure is similar to the NPE example, except now there are two training sub-directories and two
train_settings.yaml files.

gnpe_model/

config files
waveform_dataset_settings.yaml
asd_dataset_settings_fiducial.yaml
asd_dataset_settings.yaml
train_settings_main.yaml
train_settings_init.yaml
GW150914.ini

training_data/
waveform_dataset.hdf5
asd_dataset.hdf5
asd_dataset_fiducial.hdf5
asd_dataset_fiducial/ # Contains the asd_dataset.hdf5 and also temp files for␣

→˓asd generation
asd_dataset/ # Contains the asd_dataset.hdf5 and also temp files for asd␣

→˓generation

training/
main_train_dir/

model_050.pt
model_stage_0.pt
model_latest.pt
history.txt
etc...

init_train_dir/
model_050.pt
model_stage_0.pt
model_latest.pt
history.txt
etc...

outdir_GW150914/
(continues on next page)

21

dingo-gw

(continued from previous page)

dingo_pipe output

6.1 Step 1 Generating a Waveform Dataset

First generate the directory structure:

cd gnpe_model
mkdir training_data
mkdir training
mkdir training/main_train_dir
mkdir training/init_train_dir

Generate the waveform dataset:

dingo_generate_dataset --settings waveform_dataset_settings.yaml --out_file training_
→˓data/waveform_dataset.hdf5

or using condor:

dingo_generate_dataset_dag --settings_file
waveform_dataset_settings.yaml --out_file
training_data/waveform_dataset.hdf5 --env_path $DINGO_VENV_PATH --num_jobs 4
--request_cpus 16 --request_memory 1280000 --request_memory_high 256000

6.2 Step 2 Generating an ASD dataset

As before we generate a fiducial ASD dataset containing a single ASD:

dingo_generate_asd_dataset --settings_file asd_dataset_settings_fiducial.yaml --data_dir
training_data/asd_dataset_fiducial -out_name training_data/asd_dataset_fiducial/asds_O1_
→˓fiducial.hdf5

and a large ASD dataset:

dingo_generate_asd_dataset --settings_file asd_dataset_settings.yaml --data_dir
training_data/asd_dataset -out_name training_data/asd_dataset/asds_O1.hdf5

6.3 Step 3 Training the network

Now we are ready for training using GNPE. Here we need to train two networks, one which estimates the time of arrival
in the detectors and one which does the full inference task. A natural question is why train two networks. The main
idea is if one is able to align (and thus standardize) the times of arrival in the detectors, the inference task will become
significantly easier. To do this we first need to train an initialization network which estimates the time of arrival in the
detectors:

dingo_train --settings_file train_settings_init.yaml --train_dir training/init_network

22 Chapter 6. GNPE model (production)

dingo-gw

Notice that the inference parameters are only the H1_time and L1_time. Also notice that the embedding_net is sig-
nificantly smaller and the number of flow steps, num_flow_steps is reduced.

dingo_train --settings_file train_settings_main.yaml --train_dir training/main_network

Notice the data.gnpe_time_shifts section. The kernel describes how much to blur the GNPE proxies and is
specified in seconds. To read more about this see GNPE.

6.4 Step 4 Doing Inference

Performing inference requires a few changes to the previous NPE setup. Most notably, since we are now using GNPE,
we have to specify the file path to both the initialization network and the main network. Another difference is the
new attribute under sampler arguments num-gnpe-iterations which indicates the number of GNPE steps to take.
If the initialization network is not fully converged or if the length of the segment being analyzed is very long, it is
recommended to increase this number.

dingo_pipe GW150914.ini

6.4. Step 4 Doing Inference 23

dingo-gw

24 Chapter 6. GNPE model (production)

CHAPTER

SEVEN

INFERENCE ON AN INJECTION

A simple example is creating an injection consistent with what the network was trained on, and then running Dingo
on it. First one can instantiate the dingo.gw.injection.Injection using the metadata from the dingo.core.
models.posterior_model.PosteriorModel (the trained network). An ASD dataset also needs to be specified,
one can take the fiducial asd dataset the network was trained on.

from dingo.core.models import PosteriorModel
import dingo.gw.injection as injection
from dingo.gw.ASD_dataset.noise_dataset import ASDDataset

main_pm = PosteriorModel(
device="cuda",
model_filename="/path/to/main_network",
load_training_info=False

)

init_pm = PosteriorModel(
device='cuda',
model_filename="/path/to/init_network",
load_training_info=False

)

injection_generator = injection.Injection.from_posterior_model_metadata(main_pm.metadata)
asd_fname = main_pm.metadata["train_settings"]["training"]["stage_0"]["asd_dataset_path"]
asd_dataset = ASDDataset(file_name=asd_fname)
injection_generator.asd = {k:v[0] for k,v in asd_dataset.asds.items()}

intrinsic_parameters = {
"chirp_mass": 35,
"mass_ratio": 0.5,
"a_1": .3,
"a_2": .5,
"tilt_1": 0.,
"tilt_2": 0.,
"phi_jl": 0.,
"phi_12": 0.

}

extrinsic_parameters = {
'phase': 0.,
'theta_jn': 2.3,

(continues on next page)

25

dingo-gw

(continued from previous page)

'geocent_time': 0.,
'luminosity_distance': 400.,
'ra': 0.,
'dec': 0.,
'psi': 0.,

}

theta = {**intrinsic_parameters, **extrinsic_parameters}
strain_data = injection_generator.injection(theta)

Then one can create a injections and do inference on them.

from dingo.gw.inference.gw_samplers import GWSamplerGNPE, GWSampler

init_sampler = GWSampler(model=init_pm)
sampler = GWSamplerGNPE(model=main_pm, init_sampler=init_sampler, num_iterations=30)
sampler.context = strain_data
sampler.run_sampler(num_samples=50_000, batch_size=10_000)
result = sampler.to_result()
result.plot_corner()

26 Chapter 7. Inference on an injection

CHAPTER

EIGHT

INTRODUCTION TO NEURAL POSTERIOR ESTIMATION

In contrast to classical parameter estimation codes like Bilby and LALInference, Dingo uses simulation-based (or
likelihood-free) inference. The basic idea is to train a neural network to represent the Bayesian posterior over source
parameters given the observed data. Training is based on simulated data rather than likelihood evaluations. Neural
posterior estimation (NPE) combines the ideas of simulation-based inference with conditional neural density estimators.

8.1 Normalizing flows

Normalizing flows provide a means to represent complicated probability distributions using neural networks, in a way
that enables rapid sampling and density estimation. They represent the distribution in terms of a mapping (or flow)
𝑓 : 𝑢 → 𝜃 on the sample space from a much simpler “base” distribution, which we take to be standard normal (of
the same dimension as the parameter space). If 𝑓 is allowed to depend on observed data 𝑑 (denoted 𝑓𝑑) then the flow
describes a conditional probability distribution 𝑞(𝜃|𝑑). The PDF is given by the change of variables rule,

𝑞(𝜃|𝑑) = 𝒩 (0, 1)𝐷(𝑓−1
𝑑 (𝜃))

⃒⃒
det 𝑓−1

𝑑

⃒⃒
, (8.1)

where 𝐷 is the dimensionality of the parameter space.

A normalizing flow must satisfy the following properties:

1. Invertibility, so that one can evaluate 𝑓−1
𝑑 (𝜃) for any 𝜃.

2. Simple Jacobian determinant, so that one can quickly evaluate det 𝑓−1
𝑑 (𝜃).

With these properties, one can quickly evaluate the right-hand side of (8.1) to obtain the density. Various types of
normalizing flow have been constructed to satisfy these properties, typically as a composition of relatively simple
transforms 𝑓 (𝑗). These relatively simple transforms are then parametrized by the output of a neural network. To
sample 𝜃 ∼ 𝑞(𝜃|𝑑), one samples 𝑢 ∼ 𝒩 (0, 1)𝐷 and applies the flow in the forward direction.

For each flow step, Dingo uses a conditional coupling transform, meaning that half of the components are held fixed,
and the other half transform elementwise, conditional on the untransformed components and the data,

𝑓
(𝑗)
𝑑,𝑖 (𝑢) =

{︃
𝑢𝑖 if 𝑖 ≤ 𝐷/2,

𝑓
(𝑗)
𝑖 (𝑢𝑖;𝑢1:𝐷/2, 𝑑) if 𝑖 > 𝐷/2.

(8.2)

if 𝑖 > 𝐷/2.

27

https://lscsoft.docs.ligo.org/bilby/index.html
https://lscsoft.docs.ligo.org/lalsuite/lalinference/index.html
https://arxiv.org/abs/1605.06376
https://arxiv.org/abs/1605.06376

dingo-gw

If the elementwise functions 𝑓 (𝑗)
𝑖 are differentiable, then it follows automatically that we have a normalizing flow. We

use a neural spline flow, meaning that the functions 𝑓
(𝑗)
𝑖 are splines, which in turn are parametrized by neural net-

work outputs (taking as input (𝑢1:𝐷/2, 𝑑)). Between each of these transforms, the parameters are randomly permuted,
ensuring that the full flow is sufficiently flexible. Dingo uses the implementation of this entire structure provided by
nflows.

8.2 Training

The conditional neural density estimator 𝑞(𝜃|𝑑) is initialized randomly and must be trained to become a good approx-
imation to the posterior 𝑝(𝜃|𝑑). To achieve this, one must specify a target loss function to minimize. A reasonable
starting point is to minimize the Kullback-Leibler (KL) divergence of 𝑝 from 𝑞,

𝐷KL(𝑝‖𝑞) =
∫︁

𝑑𝜃 𝑝(𝜃|𝑑) log 𝑝(𝜃|𝑑)
𝑞(𝜃|𝑑)

.

This measures a deviation between the two distributions, and is notably not symmetric. (We take the so-called “forward”
KL divergence, which is “mass-covering”.) Taking the expectation over data samples 𝑑 ∼ 𝑝(𝑑), and dropping the
numerator from the log term (since it is independent of the network parameters), we arrive at the loss function

𝐿 =

∫︁
𝑑𝑑 𝑝(𝑑)

∫︁
𝑑𝜃 𝑝(𝜃|𝑑) [− log 𝑞(𝜃|𝑑)] (8.3)

=

∫︁
𝑑𝜃 𝑝(𝜃)

∫︁
𝑑𝑑 𝑝(𝑑|𝜃) [− log 𝑞(𝜃|𝑑)] .(8.3)

On the second line we used Bayes’ theorem 𝑝(𝑑)𝑝(𝜃|𝑑) = 𝑝(𝜃)𝑝(𝑑|𝜃) to re-order the integrations. The loss may finally
be approximated on a mini-batch of samples,

𝐿 ≈ − 1

𝑁

𝑁∑︁
𝑖=1

log 𝑞(𝜃(𝑖)|𝑑(𝑖)),

where the samples are drawn ancestrally in a two-step process:

1. Sample from the prior, 𝜃(𝑖) ∼ 𝑝(𝜃),

2. Simulate data, 𝑑(𝑖) ∼ 𝑝(𝑑|𝜃(𝑖)),

We then take the gradient of 𝐿 with respect to network parameters and minimize using the Adam optimizer.

Importantly, the process to generate training samples incorporates the same information as a standard (likelihood-
based) sampler would use. Namely, the prior is incorporated by sampling parameters from it, and the likelihood is
incorporated by simulating data. Bayes’ theorem is incorporated in going from line 1 to line 2 in (8.3). For gravita-
tional waves, the likelihood is taken to be the probability that the residual when subtracting a signal ℎ(𝜃) from 𝑑 is
stationary Gaussian noise (with the measured PSD 𝑆n(𝑓) in the detector). Likewise, to simulate data we generate a
waveform ℎ(𝜃(𝑖)) and add a random noise realization 𝑛 ∼ 𝒩 (0, 𝑆n(𝑓)). Ultimately, however, the SBI approach is more
flexible, since in principle one could add non-stationary or non-Gaussian noise, and train the network to reproduce the
posterior, despite not having a tractable likelihood. See the section on training data for additional details of training for
gravitational wave inference.

Intuitively, one way to understand NPE is simply that we are doing supervised deep learning—inferring parameter
labels from examples—but allowing for the flexibility to produce a probabilistic answer. With this flexibility, the
network learns to produce the Bayesian posterior.

28 Chapter 8. Introduction to neural posterior estimation

https://arxiv.org/abs/1906.04032
https://github.com/bayesiains/nflows
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

CHAPTER

NINE

CODE DESIGN

9.1 Reproducibility

Generating reproducible results must be central to any deep learning code. Dingo attempts to achieve this in the
following ways:

9.1.1 Settings

There are a large number of configuration options that must be selected when using Dingo. These include

• Waveform and noise dataset settings,

• Training settings, including pre-processing, neural network, and training strategy settings,

• Inference settings, including event time or injection data.

The Dingo approach is to save all of these settings as nested dictionaries together with the outputs of the various tasks. In
practice, this means specifying the settings as a .yaml file and passing this to a command-line script that runs some code
and produces an output file (.hdf5 or .pt). The output file then contains the settings dictionary (possibly augmented
by additional derived parameters). All output files can be inspected using the command-line script dingo_ls, which
prints the stored settings and possibly additional information. The output from dingo_ls could (with a small amount
of effort) be used to reproduce the exact results (modulo random seeds, to be implemented).

In addition to saving the user-provided settings at each step, Dingo also saves the settings from precursor steps. For
example, when training a model on data from a given waveform dataset, the waveform dataset settings are also saved
along with the model settings. This can be very useful at a later point, when only the trained model is available,
not the training data. Beyond ensuring reproducibility, having these precursor settings available is needed for certain
downstream tasks (e.g., combining the intrinsic prior from a waveform dataset with the extrinsic prior specified for
training).

9.1.2 Random seeds

To-do

Implement this.

29

dingo-gw

9.1.3 Unique identifiers for models

To-do

Implement this.

9.2 Code re-use

9.2.1 core and gw packages

Although the only current use case for Dingo is to analyze LVK data, we hope that it can be extended to other GW
or astrophysical (or more general scientific) applications. To facilitate this, we follow the Bilby approach of partition-
ing code into core and gw components: gw contains GW-specific code (relating to waveforms, interferometers, etc.)
whereas core contains generic network architectures, data structures, samplers, etc., that we expect could be used in
other applications. As we find ways to write elements of code in more generic ways, we hope to migrate additional
components from gw to core. We could then envision future packages, e.g., for LISA inference, GW populations, or
cosmology.

9.2.2 Data transforms

We follow the PyTorch guidelines of pre-processing data using a sequence of transforms. Dingo includes transforms
for tasks such as sampling extrinsic parameters, projecting waveform polarizations to detectors, and adding noise.
The same transforms are re-used at inference time, where a similar (but always identical) sequence is required. Some
transforms also behave differently at inference time, and thus have a flag to specify the mode.

9.2.3 Data structures

Dingo uses several dataset classes, all of which inherit from dingo.core.dataset.DingoDataset. This provides a
common IO (to save/load from HDF5 as well as dictionaries). It also stores the settings dictionary as an attribute.

9.3 Command-line scripts

In general, Dingo is constructed around libraries and classes that are used to carry out various data processing tasks.
There are a large number of configuration options, which are often passed as dictionaries, enabling the addition of new
settings without breaking old code.

For very high-level tasks, such as generating a training dataset or training a network, we believe it is most straightforward
to use a command-line interface. This is because these are end-user tasks that might be called by separate programs,
or on a cluster, or because some of these (dataset generation and training) can be quite expensive.

A Dingo command-line script begins with the prefix dingo_ and is usually a thin wrapper around a function that could
be called by other code if desired. It takes as input a .yaml file, passes it as a dictionary to the function, obtains a result,
and saves it to disk. We hope that this balance between libraries and a command-line interface enables an extensible
code going forward.

30 Chapter 9. Code design

https://lscsoft.docs.ligo.org/bilby/index.html
https://pytorch.org/tutorials/beginner/basics/transforms_tutorial.html

CHAPTER

TEN

GENERATING WAVEFORMS

Training data for Dingo consist of pairs of parameters 𝜃 and corresponding simulated strain data sets 𝑑𝐼 , where 𝐼 runs
over the GW interferometers (L1, H1, V1, etc.). Additionally, when conditioning on detector noise properties, data
also include noise context (the PSD 𝑆n,𝐼). Strain data sets are of the form

𝑑𝐼 = ℎ𝐼(𝜃) + 𝑛𝐼 ,

where ℎ𝐼(𝜃) is a signal waveform (provided by a waveform model) and 𝑛𝐼 is a noise realization (stationary and Gaus-
sian, consistent with 𝑆n,𝐼).

10.1 Data domain

At present, Dingo works entirely with frequency domain data. Although NPE is very flexible and could in principle
learn to interpret data in any representation, FD data are especially convenient because (1) stationary Gaussian noise is
independent in each frequency bin, so noise generation is straightforward, (2) time shifts take a simple form, enabling
improved data augmentation, and (3) the noise context is already in FD. Other domains could be useful in the future,
however, so the code is written in a way that the domain could be adapted.

The domain is specified by instantiating a FrequencyDomain,

from dingo.gw.domains import FrequencyDomain
domain = FrequencyDomain(f_min=20.0, f_max=1024.0, delta_f=0.125)

/home/docs/checkouts/readthedocs.org/user_builds/dingo-gw/envs/latest/lib/python3.10/
→˓site-packages/dingo/gw/__init__.py:3: UserWarning: Wswiglal-redir-stdio:

SWIGLAL standard output/error redirection is enabled in IPython.
This may lead to performance penalties. To disable locally, use:

with lal.no_swig_redirect_standard_output_error():
...

To disable globally, use:

lal.swig_redirect_standard_output_error(False)

Note however that this will likely lead to error messages from
LAL functions being either misdirected or lost when called from
Jupyter notebooks.

(continues on next page)

31

dingo-gw

(continued from previous page)

To suppress this warning, use:

import warnings
warnings.filterwarnings("ignore", "Wswiglal-redir-stdio")
import lal

import lal

Derived class properties include, e.g., the frequency grid. Frequency arrays run from 0 to f_max, as is standard for
GW data analysis software.

domain.sample_frequencies

array([0.000000e+00, 1.250000e-01, 2.500000e-01, ..., 1.023750e+03,
1.023875e+03, 1.024000e+03], dtype=float32)

Note: The window factor 𝑤 used when FFTing from time domain data is also stored within the domain, in domain.
window_factor. This enters into the standard deviation of white noise in each frequency bin, domain.noise_std.
In frequency domain, this is given by

√︀
𝑤/4𝛿𝑓 .

Various class methods also act on data, to perform operations such as zeroing below f_min, truncating above f_max,
or applying a time shift:

class dingo.gw.domains.FrequencyDomain(f_min: float, f_max: float, delta_f: float, window_factor: float |
None = None)

Defines the physical domain on which the data of interest live.

The frequency bins are assumed to be uniform between [0, f_max] with spacing delta_f. Given a finite length
of time domain data, the Fourier domain data starts at a frequency f_min and is zero below this frequency.
window_kwargs specify windowing used for FFT to obtain FD data from TD data in practice.

static add_phase(data, phase)
Add a (frequency-dependent) phase to a frequency series. Allows for batching, as well as additional chan-
nels (such as detectors). Accounts for the fact that the data could be a complex frequency series or real and
imaginary parts.

Convention: the phase phi(f) is defined via exp(- 1j * phi(f)).

Parameters

• data (Union[np.array, torch.Tensor]) –

• phase (Union[np.array, torch.Tensor]) –

Return type
New array or tensor of the same shape as data.

property delta_f: float

The frequency spacing of the uniform grid [Hz].

property domain_dict

Enables to rebuild the domain via calling build_domain(domain_dict).

property duration: float

Waveform duration in seconds.

32 Chapter 10. Generating waveforms

dingo-gw

property f_max: float

The maximum frequency [Hz] is typically set to half the sampling rate.

property f_min: float

The minimum frequency [Hz].

property frequency_mask: ndarray

Mask which selects frequency bins greater than or equal to the starting frequency

property frequency_mask_length: int

Number of samples in the subdomain domain[frequency_mask].

get_sample_frequencies_astype(data)
Returns a 1D frequency array compatible with the last index of data array.

Decides whether array is numpy or torch tensor (and cuda vs cpu), and whether it contains the leading zeros
below f_min.

Parameters
data (Union[np.array, torch.Tensor]) – Sample data

Return type
frequency array compatible with last index

property noise_std: float

Standard deviation of the whitened noise distribution.

To have noise that comes from a multivariate unit normal distribution, you must divide by this factor. In
practice, this means dividing the whitened waveforms by this.

TODO: This description makes some assumptions that need to be clarified. Windowing of TD data; taper-
ing window has a slope -> reduces power only for noise, but not for the signal which is in the main part
unaffected by the taper

property sampling_rate: float

The sampling rate of the data [Hz].

set_new_range(f_min: float | None = None, f_max: float | None = None)
Set a new range [f_min, f_max] for the domain. This is only allowed if the new range is contained within
the old one.

time_translate_data(data, dt)
Time translate frequency-domain data by dt. Time translation corresponds (in frequency domain) to mul-
tiplication by

exp(−2𝜋𝑖 𝑓 𝑑𝑡).

This method allows for multiple batch dimensions. For torch.Tensor data, allow for either a complex or a
(real, imag) representation.

Parameters

• data (array-like (numpy, torch)) – Shape (B, C, N), where

– B corresponds to any dimension >= 0,

– C is either absent (for complex data) or has dimension >= 2 (for data represented as real
and imaginary parts), and

– N is either len(self) or len(self)-self.min_idx (for truncated data).

• dt (torch tensor, or scalar (if data is numpy)) – Shape (B)

10.1. Data domain 33

dingo-gw

Return type
Array-like of the same form as data.

update(new_settings: dict)
Update the domain with new settings. This is only allowed if the new settings are “compatible” with the
old ones. E.g., f_min should be larger than the existing f_min.

Parameters
new_settings (dict) – Settings dictionary. Must contain a subset of the keys contained in
domain_dict.

update_data(data: ndarray, axis: int = -1, low_value: float = 0.0)
Adjusts data to be compatible with the domain:

• Below f_min, it sets the data to low_value (typically 0.0 for a waveform, but for a PSD this might be
a large value).

• Above f_max, it truncates the data array.

Parameters

• data (np.ndarray) – Data array

• axis (int) – Which data axis to apply the adjustment along.

• low_value (float) – Below f_min, set the data to this value.

Returns
The new data array.

Return type
np.ndarray

10.2 Waveform generator

Waveforms are generated using the WaveformGenerator class (or its subclass NewInterfaceWaveformGenerator,
for employing the new LIGO waveform interface, needed for some approximants). This depends on a Domain as well
as a waveform approximant and a reference frequency f_ref. In the backend, the WaveformGenerator class calls
LALSimulation functions (typically SimInspiralFD) via the SWIG-Python interface. For time domain waveforms,
SimInspiralFD takes care of FFTing to frequency domain. The NewInterfaceWaveformGenerator class calls the
gwsignal module, a Python interface recently implemented in LALSimulation, which is needed for employing some of
the latest waveform approximants, as the SEOBNRv5HM and SEOBNRv5PHM.

from dingo.gw.waveform_generator import WaveformGenerator #,␣
→˓NewInterfaceWaveformGenerator

wfg = WaveformGenerator(approximant='IMRPhenomXPHM', domain=domain, f_ref=20.0)
wfg = NewInterfaceWaveformGenerator(approximant='SEOBNRv5PHM', domain=domain, f_ref=20.
→˓0)

Setting spin_conversion_phase = None. Using phase parameter for conversion to cartesian␣
→˓spins.

To generate a waveform we first need to choose parameters. Here we sample parameters from a bilby.core.prior.
PriorDict. We use the default Dingo intrinsic prior.

34 Chapter 10. Generating waveforms

https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/

dingo-gw

from bilby.core.prior import PriorDict
from dingo.gw.prior import default_intrinsic_dict

prior = PriorDict(default_intrinsic_dict)
prior

{'mass_1': Constraint(minimum=10.0, maximum=80.0, name=None, latex_label=None,␣
→˓unit=None),
'mass_2': Constraint(minimum=10.0, maximum=80.0, name=None, latex_label=None,␣
→˓unit=None),
'mass_ratio': bilby.gw.prior.UniformInComponentsMassRatio(minimum=0.125, maximum=1.0,␣
→˓name='mass_ratio', latex_label='q', unit=None, boundary=None, equal_mass=False),
'chirp_mass': bilby.gw.prior.UniformInComponentsChirpMass(minimum=25.0, maximum=100.0,␣
→˓name='chirp_mass', latex_label='$\\mathcal{M}$', unit=None, boundary=None),
'luminosity_distance': DeltaFunction(peak=1000.0, name=None, latex_label=None,␣
→˓unit=None),
'theta_jn': Sine(minimum=0.0, maximum=3.141592653589793, name=None, latex_label=None,␣
→˓unit=None, boundary=None),
'phase': Uniform(minimum=0.0, maximum=6.283185307179586, name=None, latex_label=None,␣
→˓unit=None, boundary='periodic'),
'a_1': Uniform(minimum=0.0, maximum=0.99, name=None, latex_label=None, unit=None,␣
→˓boundary=None),
'a_2': Uniform(minimum=0.0, maximum=0.99, name=None, latex_label=None, unit=None,␣
→˓boundary=None),
'tilt_1': Sine(minimum=0.0, maximum=3.141592653589793, name=None, latex_label=None,␣
→˓unit=None, boundary=None),
'tilt_2': Sine(minimum=0.0, maximum=3.141592653589793, name=None, latex_label=None,␣
→˓unit=None, boundary=None),
'phi_12': Uniform(minimum=0.0, maximum=6.283185307179586, name=None, latex_label=None,␣
→˓unit=None, boundary='periodic'),
'phi_jl': Uniform(minimum=0.0, maximum=6.283185307179586, name=None, latex_label=None,␣
→˓unit=None, boundary='periodic'),
'geocent_time': DeltaFunction(peak=0.0, name=None, latex_label=None, unit=None)}

p = prior.sample()
p

{'mass_ratio': 0.27516887747784635,
'chirp_mass': 75.96284973482983,
'luminosity_distance': 1000.0,
'theta_jn': 1.4424160368867687,
'phase': 3.5597919874340875,
'a_1': 0.6803566132772145,
'a_2': 0.1772403333232536,
'tilt_1': 2.4084579981751792,
'tilt_2': 1.5913639153680237,
'phi_12': 0.17224461804836214,
'phi_jl': 5.8646174013435814,
'geocent_time': 0.0}

Finally, we generate the waveform. This is returned as a dictionary, with entries for each polarization. This way
of representing a sample is used throughout Dingo, and will be very convenient when applying transforms (to apply
extrinsic parameters, add noise, etc.).

10.2. Waveform generator 35

dingo-gw

h = wfg.generate_hplus_hcross(p)
h

{'h_plus': array([0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j]),
'h_cross': array([0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j])}

import matplotlib.pyplot as plt
plt.plot(domain.sample_frequencies, h['h_plus'].real, label='real')
plt.plot(domain.sample_frequencies, h['h_plus'].imag, label='imag')
plt.xlim((10,1024))
plt.xscale('log')
plt.legend()
plt.xlabel('f')
plt.ylabel(r'h_+')
plt.show()

Note that the waveform is nonzero slightly below f_min. This simply arises from the model implementation in
LALSimulation. When training networks, input data will be truncated below f_min.

The complete specification of the WaveformGenerator class is given as

class dingo.gw.waveform_generator.WaveformGenerator(approximant: str, domain: Domain, f_ref: float,
f_start: float | None = None, mode_list:
List[Tuple] | None = None, transform=None,
spin_conversion_phase=None, **kwargs)

36 Chapter 10. Generating waveforms

dingo-gw

Generate polarizations using LALSimulation routines in the specified domain for a single GW coalescence given
a set of waveform parameters.

Parameters

• approximant (str) – Waveform “approximant” string understood by lalsimulation This is
defines which waveform model is used.

• domain (Domain) – Domain object that specifies on which physical domain the waveform
polarizations will be generated, e.g. Fourier domain, time domain.

• f_ref (float) – Reference frequency for the waveforms

• f_start (float) – Starting frequency for waveform generation. This is optional, and if not
included, the starting frequency will be set to f_min. This exists so that EOB waveforms can
be generated starting from a lower frequency than f_min.

• mode_list (List[Tuple]) – A list of waveform (ell, m) modes to include when generating
the polarizations.

• spin_conversion_phase (float = None) – Value for phiRef when computing cartesian
spins from bilby spins via bilby_to_lalsimulation_spins. The common convention is to use
the value of the phase parameter here, which is also used in the spherical harmonics when
combining the different modes. If spin_conversion_phase = None, this default behavior is
adapted. For dingo, this convention for the phase parameter makes it impossible to treat the
phase as an extrinsic parameter, since we can only account for the change of phase in the
spherical harmonics when changing the phase (in order to also change the cartesian spins –
specifically, to rotate the spins by phase in the sx-sy plane – one would need to recompute
the modes, which is expensive). By setting spin_conversion_phase != None, we impose
the convention to always use phase = spin_conversion_phase when computing the cartesian
spins.

generate_FD_modes_LO(parameters)
Generate FD modes in the L0 frame.

Parameters
parameters (dict) – Dictionary of parameters for the waveform. For details see see
self.generate_hplus_hcross.

Returns

• hlm_fd (dict) – Dictionary with (l,m) as keys and the corresponding FD modes in lal format
as values.

• iota (float)

generate_FD_waveform(parameters_lal: Tuple)→ Dict[str, ndarray]
Generate Fourier domain GW polarizations (h_plus, h_cross).

Parameters
parameters_lal – A tuple of parameters for the lalsimulation waveform generator

Returns
A dictionary of generated waveform polarizations

Return type
pol_dict

generate_TD_modes_L0(parameters)
Generate TD modes in the L0 frame.

10.2. Waveform generator 37

dingo-gw

Parameters
parameters (dict) – Dictionary of parameters for the waveform. For details see see
self.generate_hplus_hcross.

Returns

• hlm_td (dict) – Dictionary with (l,m) as keys and the corresponding TD modes in lal format
as values.

• iota (float)

generate_TD_waveform(parameters_lal: Tuple)→ Dict[str, ndarray]
Generate time domain GW polarizations (h_plus, h_cross)

Parameters
parameters_lal – A tuple of parameters for the lalsimulation waveform generator

Returns
A dictionary of generated waveform polarizations

Return type
pol_dict

generate_hplus_hcross(parameters: Dict[str, float], catch_waveform_errors=True)→ Dict[str, ndarray]
Generate GW polarizations (h_plus, h_cross).

If the generation of the lalsimulation waveform fails with an “Input domain error”, we return NaN polar-
izations.

Use the domain, approximant, and mode_list specified in the constructor along with the waveform param-
eters to generate the waveform polarizations.

Parameters

• parameters (Dict[str, float]) – A dictionary of parameter names and scalar values.
The parameter dictionary must include the following keys. For masses, spins, and distance
there are multiple options.

Mass: (mass_1, mass_2) or a pair of quantities from
((chirp_mass, total_mass), (mass_ratio, symmetric_mass_ratio))

Spin:
(a_1, a_2, tilt_1, tilt_2, phi_12, phi_jl) if precessing binary or (chi_1, chi_2) if the binary
has aligned spins

Reference frequency: f_ref at which spin vectors are defined Extrinsic:

Distance: one of (luminosity_distance, redshift, comoving_distance) Inclination:
theta_jn Reference phase: phase Geocentric time: geocent_time (GPS time)

The following parameters are not required:
Sky location: ra, dec, Polarization angle: psi

Units:
Masses should be given in units of solar masses. Distance should be given in mega-
parsecs (Mpc). Frequencies should be given in Hz and time in seconds. Spins should be
dimensionless. Angles should be in radians.

• catch_waveform_errors (bool) – Whether to catch lalsimulation errors

Returns
A dictionary of generated waveform polarizations

38 Chapter 10. Generating waveforms

dingo-gw

Return type
wf_dict

generate_hplus_hcross_m(parameters: Dict[str, float])→ Dict[tuple, Dict[str, ndarray]]
Generate GW polarizations (h_plus, h_cross), separated into contributions from the different modes. This
method is identical to self.generate_hplus_hcross, except that it generates the individual contributions of the
modes to the polarizations and sorts these according to their transformation behavior (see below), instead
of returning the overall sum.

This is useful in order to treat the phase as an extrinsic parameter. Instead of {“h_plus”: hp, “h_cross”:
hc}, this method returns a dict in the form of {m: {“h_plus”: hp_m, “h_cross”: hc_m} for m in [-
l_max,. . . ,0,. . . ,l_max]}. Each key m contains the contribution to the polarization that transforms according
to exp(-1j * m * phase) under phase transformations (due to the spherical harmonics).

Note:

• pol_m[m] contains contributions of the m modes and and the -m modes. This is because the
frequency domain (FD) modes have a positive frequency part which transforms as exp(-1j * m *
phase), while the negative frequency part transforms as exp(+1j * m * phase). Typically, one of
these dominates [e.g., the (2,2) mode is dominated by the negative frequency part and the (-2,2)
mode is dominated by the positive frequency part] such that the sum of (l,|m|) and (l,-|m|) modes
transforms approximately as exp(1j * |m| * phase), which is e.g. used for phase marginalization in
bilby/lalinference. However, this is not exact. In this method we account for this effect, such that
each contribution pol_m[m] transforms exactly as exp(-1j * m * phase).

• Phase shifts contribute in two ways: Firstly via the spherical harmonics, which we account for
with the exp(-1j * m * phase) transformation. Secondly, the phase determines how the PE spins
transform to cartesian spins, by rotating (sx,sy) by phase. This is not accounted for in this function.
Instead, the phase for computing the cartesian spins is fixed to self.spin_conversion_phase (if not
None). This effectively changes the PE parameters {phi_jl, phi_12} to parameters {phi_jl_prime,
phi_12_prime}. For parameter estimation, a postprocessing operation can be applied to account
for this, {phi_jl_prime, phi_12_prime} -> {phi_jl, phi_12}. See also documentation of __init__
method for more information on self.spin_conversion_phase.

Differences to self.generate_hplus_hcross: - We don’t catch errors yet TODO - We don’t apply transforms
yet TODO

Parameters
parameters (dict) – Dictionary of parameters for the waveform. For details see see
self.generate_hplus_hcross.

Returns
pol_m – Dictionary with contributions to h_plus and h_cross, sorted by their transforma-
tion behaviour under phase shifts: {m: {“h_plus”: hp_m, “h_cross”: hc_m} for m in [-
l_max,. . . ,0,. . . ,l_max]} Each contribution h_m transforms as exp(-1j * m * phase) under
phase shifts (for fixed self.spin_conversion_phase, see above).

Return type
dict

setup_mode_array(mode_list: List[Tuple])→ Dict
Define a mode array to select waveform modes to include in the polarizations from a list of modes.

Parameters
mode_list (a list of (ell, m) modes) –

Returns
A lal parameter dictionary

10.2. Waveform generator 39

dingo-gw

Return type
lal_params

10.2.1 Waveform modes

Add later.

40 Chapter 10. Generating waveforms

CHAPTER

ELEVEN

BUILDING A WAVEFORM DATASET

For training neural networks, the more training samples the better. With too little training data, one runs the risk of
overfitting. Waveforms, however, can be expensive to generate and take up significant storage. Dingo adopts several
strategies to mitigate these problems:

• Dingo partitions parameters into two types—intrinsic and extrinsic—and builds a training set based only on the
intrinsic parameters. This consists of waveform polarizations ℎ+ and ℎ×. Extrinsic parameters are selected
during training, and applied to generate the detector waveforms ℎ𝐼 . This augments the training set to provide
unlimited samples from the extrinsic parameters.

• Saved waveforms are compressed using a singular value decomposition. Although this is lossy, waveform mis-
matches can monitored to ensure that they fall below the intrinsic error in the waveform model.

11.1 The WaveformDataset class

The WaveformDataset is a storage container for waveform polarizations and parameters, which can used to serve
samples to a neural network during training:

class dingo.gw.dataset.WaveformDataset(file_name=None, dictionary=None, transform=None,
precision=None, domain_update=None, svd_size_update=None)

Bases: DingoDataset, Dataset

This class stores a dataset of waveforms (polarizations) and corresponding parameters.

It can load the dataset either from an HDF5 file or suitable dictionary.

Once a waveform data set is in memory, the waveform data are consumed through a __getitem__() call, optionally
applying a chain of transformations, which are classes that implement a __call__() method.

For constructing, provide either file_name, or dictionary containing data and settings entries, or neither.

Parameters

• file_name (str) – HDF5 file containing a dataset

• dictionary (dict) – Contains settings and data entries. The dictionary keys should be
‘settings’, ‘parameters’, and ‘polarizations’.

• transform (Transform) – Transform to be applied to dataset samples when accessed
through __getitem__

• precision (str ('single', 'double')) – If provided, changes precision of loaded
dataset.

• domain_update (dict) – If provided, update domain from existing domain using new set-
tings.

41

dingo-gw

• svd_size_update (int) – If provided, reduces the SVD size when decompressing (for
speed).

initialize_decompression(svd_size_update: int | None = None)
Sets up decompression transforms. These are applied to the raw dataset before self.transform. E.g., SVD
decompression.

Parameters
svd_size_update (int) – If provided, reduces the SVD size when decompressing (for
speed).

load_supplemental(domain_update=None, svd_size_update=None)
Method called immediately after loading a dataset.

Creates (and possibly updates) domain, updates dtypes, and initializes any decompression transform. Also
zeros data below f_min, and truncates above f_max.

Parameters

• domain_update (dict) – If provided, update domain from existing domain using new
settings.

• svd_size_update (int) – If provided, reduces the SVD size when decompressing (for
speed).

update_domain(domain_update: dict | None = None)
Update the domain based on new configuration.

The waveform dataset provides waveform polarizations in a particular domain. In Frequency domain, this
is [0, domain._f_max]. Furthermore, data is set to 0 below domain._f_min. In practice one may want to
train a network based on slightly different domain settings, which corresponds to truncating the likelihood
integral.

This method provides functionality for that. It truncates and/or zeroes the dataset to the range specified by
the domain, by calling domain.update_data.

Parameters
domain_update (dict) – Settings dictionary. Must contain a subset of the keys contained
in domain_dict.

WaveformDataset subclasses dingo.core.dataset.DingoDataset and torch.utils.data.Dataset. The for-
mer provides generic functionality for saving and loading datasets as HDF5 files and dictionaries, and is used in several
components of Dingo. The latter allows the WaveformDataset to be used with a PyTorch DataLoader. In general,
we follow the PyTorch design framework for training, including Datasets, DataLoaders, and Transforms.

11.2 Generating a simple dataset

As described above, the WaveformDataset class is just a container, and does not generate the contents itself. Dataset
generation is instead carried out using functions in the dingo.gw.dataset.generate_dataset module. Although
in practice, datasets are likely to be generated from a settings file using the command line interface, here we describe
how to generate one interactively.

A dataset is based on an intrinsic prior and a waveform generator, so we build these as described here.

from dingo.gw.waveform_generator import WaveformGenerator
from bilby.core.prior import PriorDict
from dingo.gw.prior import default_intrinsic_dict

(continues on next page)

42 Chapter 11. Building a waveform dataset

https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://pytorch.org/tutorials/beginner/basics/transforms_tutorial.html

dingo-gw

(continued from previous page)

from dingo.gw.domains import FrequencyDomain

domain = FrequencyDomain(f_min=20.0, f_max=1024.0, delta_f=0.125)
wfg = WaveformGenerator(approximant='IMRPhenomXPHM', domain=domain, f_ref=20.0)
prior = PriorDict(default_intrinsic_dict)

/home/docs/checkouts/readthedocs.org/user_builds/dingo-gw/envs/latest/lib/python3.10/
→˓site-packages/dingo/gw/__init__.py:3: UserWarning: Wswiglal-redir-stdio:

SWIGLAL standard output/error redirection is enabled in IPython.
This may lead to performance penalties. To disable locally, use:

with lal.no_swig_redirect_standard_output_error():
...

To disable globally, use:

lal.swig_redirect_standard_output_error(False)

Note however that this will likely lead to error messages from
LAL functions being either misdirected or lost when called from
Jupyter notebooks.

To suppress this warning, use:

import warnings
warnings.filterwarnings("ignore", "Wswiglal-redir-stdio")
import lal

import lal

Setting spin_conversion_phase = None. Using phase parameter for conversion to cartesian␣
→˓spins.

We can use the following function to generate sets of parameters and associated waveforms:

from dingo.gw.dataset.generate_dataset import generate_parameters_and_polarizations

parameters, polarizations = generate_parameters_and_polarizations(wfg,
prior,
num_samples=100,
num_processes=1)

Generating dataset of size 100

parameters

mass_ratio chirp_mass luminosity_distance theta_jn phase a_1 \
0 0.302823 99.704171 1000.0 1.045181 1.956625 0.624675
1 0.208840 62.787584 1000.0 1.147821 1.231156 0.523501
2 0.167807 75.470319 1000.0 2.248237 1.657892 0.084256

(continues on next page)

11.2. Generating a simple dataset 43

dingo-gw

(continued from previous page)

3 0.885713 71.122514 1000.0 2.500974 3.249277 0.151447
4 0.602687 78.836732 1000.0 2.421702 3.511744 0.920802
..
95 0.710777 87.396051 1000.0 2.460913 2.277778 0.310158
96 0.540317 50.685929 1000.0 1.736872 2.947742 0.105328
97 0.295335 56.577308 1000.0 2.340868 1.890975 0.720159
98 0.390020 94.408416 1000.0 1.719763 0.986305 0.968500
99 0.286339 69.640219 1000.0 2.093173 3.837138 0.229537

a_2 tilt_1 tilt_2 phi_12 phi_jl geocent_time
0 0.864143 2.053759 0.897406 4.995902 1.026707 0.0
1 0.457318 1.689699 2.109647 1.568618 0.603215 0.0
2 0.106429 1.648166 2.215986 0.030520 5.517168 0.0
3 0.338559 0.801100 1.155492 3.671084 3.230101 0.0
4 0.570441 2.646145 0.735851 3.358571 0.196351 0.0
..
95 0.221775 2.112918 0.499147 1.131839 3.146899 0.0
96 0.923134 1.103193 1.681197 2.727364 1.440938 0.0
97 0.634283 2.004960 1.563219 3.219694 2.781885 0.0
98 0.747774 1.329375 1.642715 3.340588 2.788269 0.0
99 0.666358 1.686112 0.907684 3.178193 5.533587 0.0

[100 rows x 12 columns]

polarizations

{'h_plus': array([[0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j],
...,
[0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j]]),

'h_cross': array([[0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j],
...,
[0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j]])}

We can then put these in a WaveformDataset,

from dingo.gw.dataset import WaveformDataset

dataset_dict = {'parameters': parameters, 'polarizations':polarizations}
wfd = WaveformDataset(dictionary=dataset_dict)

Samples can then be easily indexed,

wfd[0]

44 Chapter 11. Building a waveform dataset

dingo-gw

{'parameters': {'mass_ratio': 0.3028225394903101,
'chirp_mass': 99.70417093459808,
'luminosity_distance': 1000.0,
'theta_jn': 1.0451812800940419,
'phase': 1.956625056491646,
'a_1': 0.6246749028641134,
'a_2': 0.8641430543194487,
'tilt_1': 2.053758607319084,
'tilt_2': 0.8974055366142486,
'phi_12': 4.995902277732458,
'phi_jl': 1.0267065217222517,
'geocent_time': 0.0},
'waveform': {'h_plus': array([0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j]),
'h_cross': array([0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j])}}

Note: The sample is represented as a nested dictionary. This is a standard format for Dingo.

11.3 Automated dataset construction

The simple dataset constructed above is useful for illustrative purposes, but it lacks the several important features:

• Waveforms are not compressed. A dataset with many samples would therefore take up enormous storage space.

• Not reproducible. The dataset contains no metadata describing its construction (e.g., waveform approximant,
domain, prior, . . .).

The generate_dataset function automates all of these advanced features:

dingo.gw.dataset.generate_dataset.generate_dataset(settings: Dict, num_processes: int)→
WaveformDataset

Generate a waveform dataset.

Parameters

• settings (dict) – Dictionary of settings to configure the dataset

• num_processes (int) –

Return type
A WaveformDataset based on the settings.

This function is in turn wrapped by the command-line functions dingo_generate_dataset and
dingo_generate_dataset_dag. These take a .yaml file with the same contents as the settings dictionary.

11.3. Automated dataset construction 45

dingo-gw

11.3.1 Configuration

A typical settings dictionary / .yaml config file takes the following form, described in detail below:

domain:
type: FrequencyDomain
f_min: 20.0
f_max: 1024.0
delta_f: 0.125

waveform_generator:
approximant: IMRPhenomXPHM
f_ref: 20.0
f_start: 15.0 # Optional setting useful for EOB waveforms. Overrides f_min when␣

→˓generating waveforms.
new_interface: true # Optional setting for employing new waveform interface. This is␣

→˓needed for SEOBNRv5 approximants, and optional for standard LAL approximants.
spin_conversion_phase: 0.0

Dataset only samples over intrinsic parameters. Extrinsic parameters are chosen at␣
→˓train time.
intrinsic_prior:
mass_1: bilby.core.prior.Constraint(minimum=10.0, maximum=80.0)
mass_2: bilby.core.prior.Constraint(minimum=10.0, maximum=80.0)
chirp_mass: bilby.gw.prior.UniformInComponentsChirpMass(minimum=25.0, maximum=100.0)
mass_ratio: bilby.gw.prior.UniformInComponentsMassRatio(minimum=0.125, maximum=1.0)
phase: default
a_1: bilby.core.prior.Uniform(minimum=0.0, maximum=0.99)
a_2: bilby.core.prior.Uniform(minimum=0.0, maximum=0.99)
tilt_1: default
tilt_2: default
phi_12: default
phi_jl: default
theta_jn: default
Reference values for fixed (extrinsic) parameters. These are needed to generate a␣

→˓waveform.
luminosity_distance: 100.0 # Mpc
geocent_time: 0.0 # s

Dataset size
num_samples: 5000000

Save a compressed representation of the dataset
compression:
svd:
Truncate the SVD basis at this size. No truncation if zero.
size: 200
num_training_samples: 50000
num_validation_samples: 10000

whitening: aLIGO_ZERO_DET_high_P_asd.txt

domain
Specifies the data domain. Currenly only FrequencyDomain is implemented.

waveform_generator

46 Chapter 11. Building a waveform dataset

dingo-gw

Choose the approximant and reference frequency. For EOB models that require time integration, it is usually
necessary to specify a lower starting frequency. In this case, f_ref is ignored.

spin_conversion_phase (optional)
Value for phiRef when converting PE spins to Cartesian spins via bilby_to_lalsimulation_spins.
When set to None (default), this uses the phase parameter. When set to 0.0, phase only refers to the
azimuthal observation angle, allowing for it to be treated as an extrinsic parameter.

Important: It is necessary to set this to 0.0 if planning to train a phase-marginalized network, and then
reconstruct the phase synthetically.

intrinsic_prior
Specify the prior over intrinsic parameters. Intrinsic parameters here refer to those parameters that are needed
to generate waveform polarizations. Extrinsic parameters here refer to those parameters that can be sampled and
applied rapidly during training. As shown in the example, it is also possible to specify default priors, which is
convenient for certain parameters. These are listed in dingo.gw.prior.default_intrinsic_dict.

Intrinsic parameters obviously include masses and spins, but also inclination, reference phase, luminosity dis-
tance, and time of coalescense at geocenter. Although inclination and phase are often considered extrinsic pa-
rameters, they are needed to generate waveform polarizations and cannot be easily transformed.

Luminosity distance and time of coalescense are considered as both intrinsic and extrinsic. Indeed they are
needed to generate polarizations, but they can also be easily transformed during training to augment the dataset.
We therefore fix them to fiducial values for generating polarizations.

num_samples
The number of samples to include in the dataset. For a production model, we typically use 5× 106 samples.

compression (optional)
How to compress the dataset.

svd (optional)
Construct an SVD basis based on a specified number of additional samples. Save the main dataset in terms
of its SVD basis coefficients. The number of elements in the basis is specified by the size setting. The
performance of the basis is also evaluated in terms of the mismatch against a number of validation samples.
All of the validation information, as well as the basis itself, is saved along with the waveform dataset.

whitening (optional)
Whether to save whitened waveforms, and in particular, whether to construct the basis based on whitened
waveforms. The basis will be more efficient if whitening is used to adapt it to the detector noise character-
istics. To use whitening, simply specify the desired ASD do use, from the Bilby list of ASDs. Note that
the whitening is used only for the internal storage of the dataset. When accessing samples from the dataset,
they will be unwhitened.

Dataset compression is implemented internally by setting the WaveformGenerator.transform operator,
so that elements are compressed immediately after generation (avoiding the need to store many uncom-
pressed waveforms in memory). Likewise, decompression is implemented by setting the WaveformDataset.
decompression_transform operator to apply the inverse transformation. This will act on samples to decom-
press them when accessed through WaveformDataset.__getitem__().

Important: The automated dataset constructors store the configuration settings in WaveformDataset.settings.
This is so that the settings can be accessed by more downstream tasks, and for reference.

11.3. Automated dataset construction 47

https://git.ligo.org/lscsoft/bilby/-/tree/master/bilby/gw/detector/noise_curves

dingo-gw

11.3.2 Command-line interface

In most cases the command-line interface will be used to generate a dataset. Given a settings file, one can call

dingo_generate_dataset --settings_file settings.yaml
--num_processes N
--out_file waveform_dataset.hdf5

This will generate a dataset following the configuration in settings.yaml and save it as waveform_dataset.hdf5,
using N processes.

To inspect the dataset (or any other Dingo-generated file) use

dingo_ls waveform_dataset.hdf5

This will print the configuration settings, as well as a summary of the SVD compression performance (if available).

For larger datasets, or those based on slower waveform models, Dingo includes a script that builds a condor DAG,
dingo_generate_dataset_dag. This splits the generation of waveforms across several nodes, and then reconstitutes
the final dataset.

48 Chapter 11. Building a waveform dataset

CHAPTER

TWELVE

DATA PRE-PROCESSING

A sample from a WaveformDataset consists of labeled waveform polarizations (𝜃intrinsic, (ℎ+, ℎ×)), represented as a
nested dictionary. This must be transformed into noisy detector data 𝑑𝐼 (with additional noise context data) in a form
suitable for input to a neural network. Dingo accomplishes this by applying a sequence of transforms to the sample.

A transform is simply a class with a __call__() method, which takes a sample as input and returns a transformed
sample. A sequence of transforms can be then be composed to build a more complex transform in a modular way.
Dingo’s training transform sequence is stored as WaveformDataset.transform, and is applied automatically when
elements are accessed through indexing.

12.1 GW transform sequence

For Dingo, the flowchart below indicates the sequence of transforms applied to a sample from a WaveformDataset.

Fig. 1: Flowchart for Dingo data-preprocessing pipeline for training, starting from a sample from a WaveformDataset.
Transforms with rounded corners include an element of randomness, whereas trapezoidal items are deterministic.

Important: Some pre-processing transforms include an element of randomness. This serves to augment the training
data and reduce overfitting.

12.1.1 Extrinsic parameters

The starting point for this chain of transforms is a sample sample with parameters and polarizations
sub-dictionaries. The first transform samples the extrinsic parameters, and adds a new sub-dictionary
extrinsic_parameters to sample. Extrinsic parameters include sky position (right ascension, declination), polar-
ization, time of coalescense, and luminosity distance (the latter two of which are also considered intrinsic parameters).

class dingo.gw.transforms.SampleExtrinsicParameters(extrinsic_prior_dict)
Sample extrinsic parameters and add them to sample in a separate dictionary.

49

https://pytorch.org/tutorials/beginner/basics/transforms_tutorial.html
https://pytorch.org/vision/stable/generated/torchvision.transforms.Compose.html#torchvision.transforms.Compose

dingo-gw

12.1.2 Detector waveforms

The next sequence of transforms applies the extrinsic parameters to sample["polarizations"] to produce detector
waveforms in sample["waveform"]. First it calculates the arrival time 𝑡𝐼 of the waveform in each detector, based on
the time of coalescense at geocenter and the sky position, and stores this in sample["extrinsic_parameters"],

class dingo.gw.transforms.GetDetectorTimes(ifo_list, ref_time)
Compute the time shifts in the individual detectors based on the sky position (ra, dec), the geocent_time and the
ref_time.

Important: Dingo models are trained for a fixed set of detectors. This must be selected prior to training, and a new
model must be trained if one wishes to analyze data in a different set of detectors. Thus, e.g., separate models must be
trained for HL and HLV configurations.

Note: During training, Dingo fixes the orientation of the Earth (and corresponding interferometer positions and
orientations) to that at a fixed reference time ref_time. This is so that the model does not have to learn about the
rotation of the Earth. This is corrected in post-processing by shifting the inferred right ascension by the difference
between the true and reference sidereal times.

Optionally, the times 𝑡𝐼 are perturbed to give new “proxy times” as part of the GNPE algorithm.

class dingo.gw.transforms.GNPECoalescenceTimes(ifo_list, kernel, exact_global_equivariance=True,
inference=False)

GNPE [1] Transformation for detector coalescence times.

For each of the detector coalescence times, a proxy is generated by adding a perturbation epsilon from the GNPE
kernel to the true detector time. This proxy is subtracted from the detector time, such that the overall time shift
only amounts to -epsilon in training. This standardizes the input data to the inference network, since the applied
time shifts are always restricted to the range of the kernel.

To preserve information at inference time, conditioning of the inference network on the proxies is required. To
that end, the proxies are stored in sample[‘gnpe_proxies’].

We can enforce an exact equivariance under global time translations, by subtracting one proxy (by convention:
the first one, usually for H1 ifo) from all other proxies, and from the geocent time, see [1]. This is enabled with
the flag exact_global_equivariance.

Note that this transform does not modify the data itself. It only determines the amount by which to time-shift the
data.

[1]: arxiv.org/abs/2111.13139

Parameters

• ifo_list (bilby.gw.detector.InterferometerList) – List of interferometers.

• kernel (str) – Defines a Bilby prior, to be used for all interferometers.

• exact_global_equivariance (bool = True) – Whether to impose the exact global time
translation symmetry.

• inference (bool = False) – Whether to use inference or training mode.

Finally, the detector waveforms ℎ𝐼 are calculated from the extrinsic parameters. (In the backend, these transforms use
the Bilby interferometer libraries.) The contents of the extrinsic_parameters sub-dictionary are then moved into
sample["parameters"]; this was essentially a holding place for parameters not yet applied to the waveform.

50 Chapter 12. Data pre-processing

dingo-gw

class dingo.gw.transforms.ProjectOntoDetectors(ifo_list, domain, ref_time)
Project the GW polarizations onto the detectors in ifo_list. This does not sample any new parameters, but relies
on the parameters provided in sample[‘extrinsic_parameters’]. Specifically, this transform applies the following
operations:

(1) Rescale polarizations to account for sampled luminosity distance

(2) Project polarizations onto the antenna patterns using the ref_time and the extrinsic parameters (ra, dec, psi)

(3) Time shift the strains in the individual detectors according to the times <ifo.name>_time provided in the
extrinsic parameters.

12.1.3 Noise

Once the detector waveforms have been obtained, noise 𝑛𝐼 must be added to simulate realistic data. First, noise
ASDs are selected randomly for each detector from an ASDDataset for the relevant observing run. This is stored
in sample["asds"]. For details see ASD dataset.

class dingo.gw.transforms.SampleNoiseASD(asd_dataset)
Sample a random asds for each detector and add them to sample[‘asds’].

The waveform is then whitened based on the PSD, and furthermore scaled by the standard deviation of white noise.
This is so that each input to the network will have unit variance, which is important for successful training.

class dingo.gw.transforms.WhitenAndScaleStrain(scale_factor)
Whiten the strain data by dividing w.r.t. the corresponding asds, and scale it with 1/scale_factor.

In uniform frequency domain the scale factor should be np.sqrt(window_factor) / np.sqrt(4.0 * delta_f). It has
two purposes:

(*) the denominator accounts for frequency binning (*) dividing by window factor accounts for win-
dowing of strain data

For whitened waveforms, noise is white, so finally this is randomly sampled and added to sample["waveform"].

class dingo.gw.transforms.AddWhiteNoiseComplex

Adds white noise with a standard deviation determined by self.scale to the complex strain data.

12.1.4 Output

The final set of transforms prepares the sample for input to the neural network. First, the desired inference parameters
are selected. By taking only a subset of parameters, one can train a marginalized posterior model. These parameters
are also standardized to have zero mean and unit variance to improve training. (Standardization will be undone in
post-processing after inference.) The parameters will then be repackaged into a numpy.ndarray, so that parameter
labels are implicit based on ordering.

class dingo.gw.transforms.SelectStandardizeRepackageParameters(parameters_dict,
standardization_dict,
inverse=False, as_type=None,
device='cpu')

This transformation selects the parameters in standardization_dict, normalizes them by setting p = (p - mean) /
std, and repackages the selected parameters to a numpy array.

as_type: str = None
only applies, if self.inverse == True * if None, data type is kept * if ‘dict’, dict with * if ‘pandas’, use
pandas.DataFrame

12.1. GW transform sequence 51

dingo-gw

The waveform and asds dictionaries are also repackaged into a single array of shape suitable for input to the network.
In particular, the complex frequency domain strain data are decomposed into real and imaginary parts.

class dingo.gw.transforms.RepackageStrainsAndASDS(ifos, first_index=0)
Repackage the strains and the asds into an [num_ifos, 3, num_bins] dimensional tensor. Order of ifos is provided
by self.ifos. By convention, [:,i,:] is used for:

i = 0: strain.real i = 1: strain.imag i = 2: 1 / (asd * 1e23)

Finally, the samples dictionary of arrays is unpacked to a tuple of arrays for parameters and data.

class dingo.gw.transforms.UnpackDict(selected_keys)
Unpacks the dictionary to prepare it for final output of the dataloader. Only returns elements specified in se-
lected_keys.

When used with a torch DataLoader, the final numpy arrays are automatically transformed into torch tensors.

12.2 Building the transforms

The following function will set the transform property of a WaveformDataset to the above transform sequence:

dingo.gw.training.set_train_transforms(wfd, data_settings, asd_dataset_path, omit_transforms=None)
Set the transform attribute of a waveform dataset based on a settings dictionary. The transform takes waveform
polarizations, samples random extrinsic parameters, projects to detectors, adds noise, and formats the data for
input to the neural network. It also implements optional GNPE transformations.

Note that the WaveformDataset is modified in-place, so this function returns nothing.

Parameters

• wfd (WaveformDataset) –

• data_settings (dict) –

• asd_dataset_path (str) – Path corresponding to the ASD dataset used to generate noise.

• omit_transforms – List of sub-transforms to omit from the full composition.

The various options are specified by passing an appropriate data_settings dictionary. In practice, these settings will
be specified along with other training settings.

Listing 1: Sample data_settings dictionary for configuring a se-
quence of training transforms. This dictionary includes several options
not needed for set_train_transforms, but which are needed as part
of other training settings.

waveform_dataset_path: /path/to/waveform_dataset.hdf5 # Contains intrinsic waveforms
train_fraction: 0.95
window: # Needed to calculate window factor for simulated data
type: tukey
f_s: 4096
T: 8.0
roll_off: 0.4

domain_update:
f_min: 20.0
f_max: 1024.0

svd_size_update: 200 # Optionally, reduce the SVD size when decompressing (for␣
→˓performance)

(continues on next page)

52 Chapter 12. Data pre-processing

dingo-gw

(continued from previous page)

detectors:
- H1
- L1

extrinsic_prior: # Sampled at train time
dec: default
ra: default
geocent_time: bilby.core.prior.Uniform(minimum=-0.10, maximum=0.10)
psi: default
luminosity_distance: bilby.core.prior.Uniform(minimum=100.0, maximum=1000.0)

ref_time: 1126259462.391
gnpe_time_shifts:
kernel: bilby.core.prior.Uniform(minimum=-0.001, maximum=0.001)
exact_equiv: True

inference_parameters: default

waveform_dataset_path
Points to the waveform dataset.

train_fraction
Fraction of waveform dataset to be used for training. The remainder are used to compute the test loss.

window
Specifies the window function to use when FFTing the time-domain data. It is used here to calculate a window
factor for simulating data. See the discussion here.

domain_update (optional)
Optionally specify new domain properties. These will update the domain associated to the WaveformDataset.
They must necessarily describe a domain contained within the original.

svd_size_update (optional)
If the WaveformDataset uses SVD compression, optionally use a smaller number of basis elements than stored
in the dataset. Decompression of the waveforms is the slowest preprocessing operation, so using this option can
improve training speed at the expense of accuracy.

detectors
Set the desired GW interferometers for the Dingo model.

extrinsic_prior
Specify the extrinsic prior. Default options are available.

ref_time
Reference time for the interferometer locations and orientations. See the important note above.

gnpe_time_shifts (optional)
GNPE kernel and additional options. See GNPE.

inference_parameters
Parameters to infer with the model. At present they must be a subset of sample["parameters"]. By specifying
a strict subset, this can be used to marginalize over parameters. The default setting points to dingo.gw.prior.
default_inference_parameters:

from dingo.gw.prior import default_inference_parameters
default_inference_parameters

/home/docs/checkouts/readthedocs.org/user_builds/dingo-gw/envs/latest/lib/python3.10/
→˓site-packages/dingo/gw/__init__.py:3: UserWarning: Wswiglal-redir-stdio:

(continues on next page)

12.2. Building the transforms 53

dingo-gw

(continued from previous page)

SWIGLAL standard output/error redirection is enabled in IPython.
This may lead to performance penalties. To disable locally, use:

with lal.no_swig_redirect_standard_output_error():
...

To disable globally, use:

lal.swig_redirect_standard_output_error(False)

Note however that this will likely lead to error messages from
LAL functions being either misdirected or lost when called from
Jupyter notebooks.

To suppress this warning, use:

import warnings
warnings.filterwarnings("ignore", "Wswiglal-redir-stdio")
import lal

import lal

['chirp_mass',
'mass_ratio',
'phase',
'a_1',
'a_2',
'tilt_1',
'tilt_2',
'phi_12',
'phi_jl',
'theta_jn',
'luminosity_distance',
'geocent_time',
'ra',
'dec',
'psi']

54 Chapter 12. Data pre-processing

CHAPTER

THIRTEEN

DETECTOR NOISE

During training, simulated noise 𝑛𝐼 is added to waveforms ℎ𝐼(𝜃) measured in detectors to produce realistic simulated
data,

𝑑𝐼 = ℎ𝐼(𝜃) + 𝑛𝐼 .

Dingo assumes this noise to be stationary and Gaussian, thus it is independent in each frequency bin, with variance
given by some power spectral density (PSD).

Important: Similar to extrinsic parameters, detector noise is repeatedly sampled during training and added to the
simulated signal. This augments the training set with new noise realizations for each epoch, reducing overfitting.

Although noise is mostly stationary and Guassian during an LVK observing run, the PSD in each detector does tend
to drift from event to event. In a usual likelihood-based PE run, this is taken into account by estimating the PSD at the
time of the event (either using Welch’s method on signal-free data surrounding the event, or at the same time as the
event using BayesWave), and using this in the likelihood integral.

Dingo also estimates the PSD just prior to an event and uses this at inference time in two ways:

1. It whitens the data with respect to this PSD.

2. It provides the PSD (or rather, the inverse ASD) as context to the neural network.

A suitably trained model can therefore make use of the PSD as needed to generate the posterior.

13.1 ASD dataset

To train a model to perform inference conditioned on the noise PSD, it is necessary to not just sample random noise
realizations for a given PSD, but also sample the PSD from a distribution for a given observing run. Training in this
way is necessary to perform fully amortized inference and account for the variation of PSDs from event to event.

The ASDDataset class stores a set of ASD samples for several detectors, allowing for sampling during training.

As with the noise realizations, a random ASD is chosen from the dataset when preparing each sample during training.
This augments the training set compared to fixing the noise ASD for each sample prior to training.

Similarly to the WaveformDataset, the ASDDataset is just a container. Dingo includes routines for building such a
dataset from observational data.

55

https://en.wikipedia.org/wiki/Welch%27s_method
https://git.ligo.org/lscsoft/bayeswave

dingo-gw

13.2 Generating an ASDDataset

13.2.1 dingo_generate_asd_dataset

The basic approach is as follows:

1. Identify stretches of data within an observing run meeting certain criteria (sufficiently long, without events, and
sufficiently high quality, . . .) or take-in user-specified stretches.

2. Fetch data corresponding to these stretches using either

• GWOSC

• channels, optionally specified in the settings file.

3. Estimate ASDs using Welch’s method on these stretches.

4. Save the collection of ASDs.

usage: dingo_generate_asd_dataset [-h] --data_dir DATA_DIR [--settings_file SETTINGS_
→˓FILE] [--time_segments_file TIME_SEGMENTS_FILE] [--out_name OUT_NAME] [--verbose]

Generate an ASD dataset based on a settings file.

optional arguments:
-h, --help show this help message and exit
--data_dir DATA_DIR Path where the PSD data is to be stored. Must contain a

→˓'settings.yaml' file.
--settings_file SETTINGS_FILE

Path to a settings file in case two different datasets are␣
→˓generated in the same directory
--time_segments_file TIME_SEGMENTS_FILE

Optional file containing a dictionary of a list of time segments␣
→˓that should be used for estimating PSDs.This has to be a pickle file.
--out_name OUT_NAME Path to resulting ASD dataset
--verbose

where the settings file is of the form

dataset_settings:
f_min: 0
f_max: 2048
f_s: 4096
time_psd: 1024
T: 8
time_gap: 0
window:
roll_off: 0.4
type: tukey

num_psds_max: 20
channels:
H1: H1:DCS-CALIB_STRAIN_C02
L1: L1:DCS-CALIB_STRAIN_C02
detectors:
- H1
- L1

(continues on next page)

56 Chapter 13. Detector noise

https://www.gw-openscience.org

dingo-gw

(continued from previous page)

observing_run: O2
condor:
env_path: path/to/environment
num_jobs: 2 # per detector
num_cpus: 16
memory_cpus: 16000

Options correspond to the following:

f_min, f_max (optional)
Lower and upper frequency range of the ASDs. Defaults to 0 and f_s/2, respectively.

Sampling rate f_s (Hz)
This should be at least twice the value of f_max expected to be used.

Data length time_psd (s)
The entire length of data from which to estimate a PSD using Welch’s method. Periodigrams are calculated on
segments of this, and then averaged using the median method.

Segment length T (s)
The length of each segment on which to take the DFT and calculate a periodigram.

Gap time_gap (s)
Gap between duration-T segments. E.g., if time_psd=1024, T=8, time_gap=8, then for each PSD, 64 periodi-
grams are computed, each using data stretches 8 s long, with gaps of 8 s between segments. Segments would
then be [0 s, 8 s], [16 s, 24 s],

Window function
Parameters of the window function used before taking DFT of data segments.

num_psds_max (optional)
If set, stop building the dataset after this number of PSDs have been estimated. This setting is useful for building
a single-PSD dataset for pretraining a network.

Channels (optional)
If set, data will be fetched from these channels, instead of using GWOSC.

Detectors
Which detectors (H1, L1, V1, . . .) to include in the dataset.

Observing run
Which observing run to use when estimating PSDs.

Condor (optional)
Settings for HTCondor useful for parallelizing the ASD estimation across condor jobs.

13.2.2 dingo_generate_synthetic_asd_dataset

This method generates a dataset of synthetic ASDs from a dataset of existing ASDs to enhance robustness against ASD
distribution shifts. In particular, this allows to generate a dataset of synthetic ASDs that are scaled by a fiducial ASD
in order to adapt to a new observing run. This is particularly useful for training Dingo networks at the beginning of an
observing run, when the number of training ASDs is limited. It also allows to generate smoother synthetic ASDs that
more closely resemble those from BayesWave. The implementation follows the steps explained in this paper.

usage: dingo_generate_synthetic_asd_dataset [-h] --asd_dataset ASD_DATASET --settings_
→˓file SETTINGS_FILE [--num_processes NUM_PROCESSES] [--out_file OUT_FILE] [--verbose]

(continues on next page)

13.2. Generating an ASDDataset 57

https://htcondor.readthedocs.io/en/latest/index.html
https://inspirehep.net/literature/2182788

dingo-gw

(continued from previous page)

Generate a synthetic noise ASD dataset from an existing dataset of real ASDs.

optional arguments:
-h, --help show this help message and exit
--asd_dataset ASD_DATASET

Path to existing ASD dataset to be parameterized and re-sampled
--settings_file SETTINGS_FILE

YAML file containing database settings
--num_processes NUM_PROCESSES

Number of processes to use in pool for parallel parameterization
--out_file OUT_FILE Name of file for storing dataset.
--verbose

with a settings file of the form

parameterization_settings:
num_spline_positions: 30
num_spectral_segments: 400
sigma: 0.14
delta_f: -1
smoothen: True

sampling_settings:
bandwidth_spectral: 0.5
bandwidth_spline: 0.25
num_samples: 500
split_frequencies:
- 30
- 100

rescaling_psd_paths:
H1: /path/to/rescaling_asd_H1.hdf5
L1: /path/to/rescaling_asd_L1.hdf5

Options correspond to the following:

num_spline_positions
Number of nodes to use for the cubic spline interpolating the broad-band noise PSD.

num_spectral_segments
Maximum number of spectral lines to model.

sigma
Standard deviation of the Normal distribution parameterizing 𝑝(log𝑆𝑛|𝑧).

delta_f
If > 0, truncates each spectral line.

smoothen
Whether to save the smooth ASDs (True) or the noisy ASDs (False). The noisy synthetic ASDs resemble real
ASDs estimated with Welch’s method more closely, while the smooth ASDs are more similar to ASDs generated
with BayesWave. (Default: False)

bandwidth_spectral, bandwidth_spline
Bandwidths for the KDEs modeling the distribution over spectral lines and broad-band noise, respectively. These
determine the width of the resulting distribution.

num_samples

58 Chapter 13. Detector noise

dingo-gw

Number of synthetic ASDs to generate.

split_frequencies
(Set of) frequencies at dividing the broad-band noise into independent segments, e.g. due to different dominant
noise sources (shot noise, seismic noise, etc.).

rescaling_psd_paths
Paths to ASD datasets for each detector to which the synthetic ASDs should be rescaled, e.g. the PSDs from the
target observing run. If the dataset contains multiple ASDs, we use the first one. (Optional; if not provided, no
rescaling will be done.)

13.3 Data conditioning

Importantly, the variance of white noise in each frequency bin is not 1, but rather

𝜎2
white =

𝑤

4𝛿𝑓

where 𝛿𝑓 is the frequency resolution and 𝑤 is a “window factor”.

The denominator in the noise variance is seen to arise most easily in the noise-weighted inner product,

(𝑎|𝑏) = 4Re
∫︁ 𝑓max

𝑓min

𝑑𝑓
𝑎*(𝑓)𝑏(𝑓)

𝑆n(𝑓)

The window factor comes in because a window must be applied to time series data prior to taking the FFT. The win-
dowing is assumed to reduce the power in the noise, but not affect the signal (which is localized away from the edge of
the data segment). To simulate this, we add noise with variance scaled by the window factor.

The noise standard deviation is stored in the property FrequencyDomain.noise_std. The window factor is calculated
from the data conditioning settings specified in the train settings file.

13.3. Data conditioning 59

dingo-gw

60 Chapter 13. Detector noise

CHAPTER

FOURTEEN

NEURAL NETWORK ARCHITECTURE

Dingo is based on a method called Neural posterior estimation, see here for an introduction. A central object is the
conditional neural density estimator, a deep neural network trained to represent the Bayesian posterior. This section
describes the neural network architecture developed in [3], and subsequently used in [4], [5] and [6]. Note that Dingo
can easily be extended to different architectures.

14.1 Neural spline flow with SVD compression

The architecture consists of two compenents, the embedding network which compresses the high-dimensionl data to a
lower dimensional feature vector, and the conditional normalizing flow which estimates the Bayesian posterior based on
this feature vector. Both components are trained jointly and end-to-end with the objective descriped here. The network
can be build with

from dingo.core.nn.nsf import create_nsf_with_rb_projection_embedding_net

14.1.1 Embedding network

The embedding network compresses the high-dimensional conditioning information (consisting of frequency domain
strain and PSD data). The first layer of this network is initialized with an SVD matrix from a reduced basis built with
non-noisy waveforms. This projection filters out the noise that is orthogonal to the signal manifold, and significantly
simplifies the task for the neural network.

The initial compression layer is followed by a sequence of residual blocks consisting of dense layers for further com-
pression. Example kwargs:

embedding_net_kwargs = {
"input_dims": (2, 3, 8033),
"output_dim": 128,
"hidden_dims": [

1024, 1024, 1024, 1024, 1024, 1024, \
512, 512, 512, 512, 512, 512, \
256, 256, 256, 256, 256, 256, \
128, 128, 128, 128, 128, 128

],
"activation": "elu",
"dropout": 0.0,
"batch_norm": True,
"svd": {

"num_training_samples": 50000,
(continues on next page)

61

https://arxiv.org/abs/1605.06376
https://en.wikipedia.org/wiki/Singular_value_decomposition

dingo-gw

(continued from previous page)

"num_validation_samples": 5000,
"size": 200,

}
}

Here, input_dims=(2, 3, 8033) refers to the input dimension, for frequency domain data with 8033 frequency
bins and 3 channels (real part, complex part, ASD) in 2 detectors. The embedding network compresses this to
output_dim=128 components. The SVD initialization is controlled with the svd argument, and the residual blocks
are specified with hidden_dims.

Note: Not all of these arguments have to be set in the configuration file when training dingo. For example, the
input_dims argument is automatically filled in based on the specified domain information and number of detectors.
Similarly, the context_dim of the flow (see below) is filled in based on the output_dim of the embedding network
and the number of GNPE proxies. See the Dingo examples for the corresponding configuration files and training
commands.

14.1.2 Flow

We use the neural spline flow as a density estimator. This takes the output of the embedding network as context
information and estimates the Bayesian posterior distribution. Example kwargs:

nsf_kwargs = {
"input_dim": 15,
"context_dim": 129,
"num_flow_steps": 30,
"base_transform_kwargs": {

"hidden_dim": 512,
"num_transform_blocks": 5,
"activation": "elu",
"dropout_probability": 0.0,
"batch_norm": True,
"num_bins": 8,
"base_transform_type": "rq-coupling",

},
}

This creates a neural spline flow with input_dim=15 parameters, conditioned on a 129 dimensional context
vector, corresponding to the 128 dimensional output of the embedding network and one GNPE proxy variable.
The neural spline flow consists of num_flow_steps=30 layers, for which the transformation is specified with
base_transform_kwargs.

nde = create_nsf_with_rb_projection_embedding_net(nsf_kwargs, embedding_net_kwargs)

62 Chapter 14. Neural network architecture

https://github.com/dingo-gw/dingo/tree/main/examples
https://arxiv.org/abs/1906.04032

CHAPTER

FIFTEEN

TRAINING

Training a network can require a significant amount of time (for production models, typically a week with a fast GPU).
We therefore expect that this will almost always be done non-interactively using a command-line script. Dingo offers
two options, dingo_train and dingo_train_condor, depending on whether your GPU is local or cluster-based.

Both of these scripts take as main argument a settings file, which specifies options relating to Data pre-processing,
training strategy, Neural network architecture, hardware, and checkpointing. They produce a trained model in PyTorch
.pt format, and they save checkpoints and the training history. The settings file is furthermore saved within the model
files for reproducibility and to be able to resume training from a checkpoint. Finally, all precursor settings files (for the
waveform or noise datasets) are also saved with the model.

15.1 Settings file

Listing 1: Example train_settings.yaml file. This is also available in
the examples/ folder. The specific settings listed will train a production-
size network, taking about a week on an NVIDIA A100. Consider reduc-
ing some model hyperparameters for experimentation.

data:
waveform_dataset_path: /path/to/waveform_dataset.hdf5 # Contains intrinsic waveforms
train_fraction: 0.95
window:
type: tukey
f_s: 4096
T: 8.0
roll_off: 0.4

domain_update:
f_min: 20.0
f_max: 1024.0

svd_size_update: 200
detectors:
- H1
- L1

extrinsic_prior:
dec: default
ra: default
geocent_time: bilby.core.prior.Uniform(minimum=-0.10, maximum=0.10)
psi: default
luminosity_distance: bilby.core.prior.Uniform(minimum=100.0, maximum=1000.0)

ref_time: 1126259462.391
(continues on next page)

63

dingo-gw

(continued from previous page)

gnpe_time_shifts:
kernel: bilby.core.prior.Uniform(minimum=-0.001, maximum=0.001)
exact_equiv: True

inference_parameters: default

model:
type: nsf+embedding
nsf_kwargs:
num_flow_steps: 30
base_transform_kwargs:
hidden_dim: 512
num_transform_blocks: 5
activation: elu
dropout_probability: 0.0
batch_norm: True
num_bins: 8
base_transform_type: rq-coupling

embedding_net_kwargs:
output_dim: 128
hidden_dims: [1024, 1024, 1024, 1024, 1024, 1024,

512, 512, 512, 512, 512, 512,
256, 256, 256, 256, 256, 256,
128, 128, 128, 128, 128, 128]

activation: elu
dropout: 0.0
batch_norm: True
svd:
num_training_samples: 20000
num_validation_samples: 5000
size: 200

Training is divided in stages. They each require all settings as indicated below.
training:
stage_0:
epochs: 300
asd_dataset_path: /path/to/asds_fiducial.hdf5
freeze_rb_layer: True
optimizer:
type: adam
lr: 0.0001

scheduler:
type: cosine
T_max: 300

batch_size: 64

stage_1:
epochs: 150
asd_dataset_path: /path/to/asds.hdf5
freeze_rb_layer: False
optimizer:
type: adam
lr: 0.00001

(continues on next page)

64 Chapter 15. Training

dingo-gw

(continued from previous page)

scheduler:
type: cosine
T_max: 150

batch_size: 64

Local settings that have no impact on the final trained network.
local:
device: cpu # Change this to 'cuda' for training on a GPU.
num_workers: 6

wandb:
project: dingo
group: O4
runtime_limits:
max_time_per_run: 36000
max_epochs_per_run: 500

checkpoint_epochs: 10
condor:
bid: 100
num_cpus: 16
memory_cpus: 128000
num_gpus: 1
memory_gpus: 8000

The train settings file is grouped into four sections:

15.1.1 data_settings

These settings point to a saved dataset of waveform polarizations and describe the transforms to obtain detector wave-
forms. A detailed description of these settings is available here.

15.1.2 model

This describes the model architecture, including network type and hyperparameters. All of these settings are described
in the section on Neural network architecture.

15.1.3 training

This describes the training strategy. Training is divided into stages, each of which can differ to some extent. Stages are
numbered (stage_0, stage_1, . . .) and executed in this order. Each stage is defined by the following settings:

epochs
Total number of training epochs for the stage. The network sees the entire training set once per epoch.

asd_dataset_path
Points to an ASDDataset file. Each stage can have its own ASD dataset, which is useful for implementing a
pre-training stage with fixed ASD and a fine-tuning stage with variable ASD.

freeze_rb_layer
Whether to freeze the first layer of the embedding network in nsf+embedding models. This layer is seeded
with reduced (SVD) basis vectors, so freezing this layer during pre-training simply projects data onto the basis
coefficients. In the fine-tuning stage, when other weights are more stable, unfreezing this can be useful.

15.1. Settings file 65

dingo-gw

optimizer
Specify optimizer type and parameters such as initial learning rate.

scheduler
Use a learning rate scheduler to reduce the learning rate over time. This can improve overall optimization.

batch_size
Number of training samples per mini-batch. For a training dataset of size 𝑁 , then each epoch will consist of 𝑁/

Important: The stage-training framework allows for separate pre-training and fine-tuning stages. We found that
having a pre-training stage where we freeze certain network weights and fix the noise ASD improves overall training
results.

15.1.4 local

The local settings are the only group that have no impact on the final trained network. Indeed, they are not even saved
in the .pt files; rather they are split off and saved in a new file local_settings.yaml.

device
cpu or cuda. Training on a GPU with CUDA is highly recommended.

num_workers
Number of CPU worker processes to use for pre-processing training data before copying to the GPU. Data pre-
processing (inluding decompression, projection to detectors, and noise generation) is quite expensive, so using 16
or 32 processes is recommended, otherwise this can become a bottleneck. We recommend monitoring the GPU
utilization percentage as well as time spent on pre-processing (output during training) to fine-tune this number.

wandb
Settings for Weights & Biases. If you have an account, you can use this to track your training progress and
compare different runs.

runtime_limits
Maximum time (in seconds) or maximum number of epochs per run. Using this could make sense in a cluster
environment.

checkpoint_epochs
Dingo saves a temporary checkpoint in model_latest.py after every epoch, but this is later overwritten by the
next checkpoint. This setting saves a permanent checkpoint after the specified number of epochs. Having these
checkpoints can help in recovering from training failures that do not result in program termination.

condor
Settings for HTCondor. The condor script will (re)submit itself according to these options.

15.2 Command-line scripts

15.2.1 dingo_train

On a local machine, simply pass the settings file (or checkpoint) and an output directory to dingo_train. It will train
until complete, or until a runtime limit is reached.

usage: dingo_train [-h] [--settings_file SETTINGS_FILE] --train_dir TRAIN_DIR [--
→˓checkpoint CHECKPOINT]

(continues on next page)

66 Chapter 15. Training

https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
https://wandb.ai/site
https://htcondor.readthedocs.io/en/latest/index.html

dingo-gw

(continued from previous page)

Train a neural network for gravitational-wave single-event inference.

This program can be called in one of two ways:
a) with a settings file. This will create a new network based on the
contents of the settings file.
b) with a checkpoint file. This will resume training from the checkpoint.

optional arguments:
-h, --help show this help message and exit
--settings_file SETTINGS_FILE

YAML file containing training settings.
--train_dir TRAIN_DIR

Directory for Dingo training output.
--checkpoint CHECKPOINT

Checkpoint file from which to resume training.

15.2.2 dingo_train_condor

On a cluster using HTCondor, use dingo_train_condor. This calls itself recursively as follows:

1. The first time you call it, use the flag --start-submission. This creates a condor submission file
submission_file.sub that again calls the executable dingo_train_condor (now without the flag) and sub-
mits it. This will run dingo_train_condor directly on the cluster node that is assigned.

2. On the cluster node, dingo_train_condor first trains the network until done or a runtime limit is reached (be
careful to set this shorter than the condor time limit). Then it creates a new submission file that once again calls
dingo_train_condor, and submits it. This will resume the run on a new node, and repeat.

usage: dingo_train_condor [-h] --train_dir TRAIN_DIR [--checkpoint CHECKPOINT] [--start_
→˓submission]

optional arguments:
-h, --help show this help message and exit
--train_dir TRAIN_DIR

Directory for Dingo training output.
--checkpoint CHECKPOINT
--start_submission

15.3 Output

Output from training is stored in the TRAIN_DIR folder passed to the training scripts. This consists of the following:

• model_latest.pt checkpoints every epoch (overwritten);

• model_XXX.pt checkpoints where XXX is the epoch number, every checkpoint_epochs epochs;

• model_stage_X.pt at the end of training stage X;

• history.txt with columns (epoch number, train loss, test loss, learning rate);

• svd_L1.hdf5, . . . , storing SVD basis information used for seeding the embedding network;

• local_settings.yaml with local settings for the run (not stored with checkpoints).

15.3. Output 67

dingo-gw

The .pt and .hdf5 files may all be inspected using dingo_ls. This prints all the settings, as well as diagnostic
information for SVD bases. The saved settings include all the settings provided in the settings file, as well as several
derived quantities, such as parameter standardizations, additional context parameters (for GNPE), etc.

15.3.1 Modifying a checkpoint

Occasionally it may be necessary to change a setting of a partially trained model. For example, a model may have been
successfully pre-trained, but the fine-tuning failed, and one may wish to change the fine-tuning settings without starting
from scratch. Since the model setting are all stored with the checkpoint, they just need to be changed.

The script dingo_append_training_stage allows for appending a model stage or replacing an existing planned
stage. It will fail if the stage has already begun training, so be sure to use it on a sufficiently early checkpoint.

usage: dingo_append_training_stage [-h] --checkpoint CHECKPOINT --stage_settings_file␣
→˓STAGE_SETTINGS_FILE --out_file OUT_FILE [--replace REPLACE]

optional arguments:
-h, --help show this help message and exit
--checkpoint CHECKPOINT
--stage_settings_file STAGE_SETTINGS_FILE
--out_file OUT_FILE
--replace REPLACE

For more detailed adjustments to the training settings the script one can use the script compatibility/
update_model_metadata.py.

usage: update_model_metadata.py [-h] --checkpoint CHECKPOINT --key KEY [KEY ...] --value␣
→˓VALUE

optional arguments:
-h, --help show this help message and exit
--checkpoint CHECKPOINT
--key KEY [KEY ...]
--value VALUE

Warning: Modifications to model metadata can easily break things. Do not use this unless completely sure what
you are doing!

68 Chapter 15. Training

CHAPTER

SIXTEEN

INFERENCE

With a trained network, inference can be performed on real data by executing following on the command line:

dingo_analyze_event
--model model.pt
--gps_time_event gps_time_event
--num_samples num_samples
--batch_size batch_size

This will download data from GWOSC at the specified time, apply the data conditioning consistent with the trained
Dingo model and transform to frequency domain, and generate the requested number of posterior samples. It will
save them in a file dingo_samples-gps_time_event.hdf5, along with all settings used in upstream components of
Dingo (the waveform dataset, noise dataset, and model training) and the data analyzed.

The dingo_analyze_event script can also be used to analyze an injection.

16.1 The Sampler class

Under the hood, the inference script uses the Sampler class, or more specifically, the GWSampler class, which inherits
from it.

class dingo.gw.inference.gw_samplers.GWSampler(**kwargs)
Bases: GWSamplerMixin, Sampler

Sampler for gravitational-wave inference using neural posterior estimation. Augments the base class by defining
transform_pre and transform_post to prepare data for the inference network.

transform_pre :

• Whitens strain.

• Repackages strain data and the inverse ASDs (suitably scaled) into a torch tensor.

transform_post :

• Extract the desired inference parameters from the network output (array-like), de-standardize them,
and repackage as a dict.

Also mixes in GW functionality for building the domain and correcting the reference time.

Allows for conditional and unconditional models, and draws samples from the model based on (optional) context
data.

This is intended for use either as a standalone sampler, or as a sampler producing initial sample points for a
GNPE sampler.

69

dingo-gw

Parameters
kwargs – Keyword arguments that are forwarded to the superclass.

property context

Data on which to condition the sampler. For injections, there should be a ‘parameters’ key with truth values.

property event_metadata

Metadata for data analyzed. Can in principle influence any post-sampling parameter transformations (e.g.,
sky position correction), as well as the likelihood detector positions.

log_prob(samples: DataFrame)→ ndarray
Calculate the model log probability at specific sample points.

Parameters
samples (pd.DataFrame) – Sample points at which to calculate the log probability.

Return type
np.array of log probabilities.

run_sampler(num_samples: int, batch_size: int | None = None)
Generates samples and stores them in self.samples. Conditions the model on self.context if appropriate
(i.e., if the model is not unconditional).

If possible, it also calculates the log_prob and saves it as a column in self.samples. When using GNPE it
is not possible to obtain the log_prob due to the many Gibbs iterations. However, in the case of just one
iteration, and when starting from a sampler for the proxy, the GNPESampler does calculate the log_prob.

Allows for batched sampling, e.g., if limited by GPU memory. Actual sampling for each batch is performed
by _run_sampler(), which will differ for Sampler and GNPESampler.

Parameters

• num_samples (int) – Number of samples requested.

• batch_size (int, optional) – Batch size for sampler.

to_result()→ Result
Export samples, metadata, and context information to a Result instance, which can be used for saving or,
e.g., importance sampling, training an unconditional flow, etc.

Return type
Result

This is instantiated based on a PosteriorModel. To draw samples, the context property must first be set to the data
to be analyzed. For gravitational waves this should be a dictionary with the following keys:

waveform
(unwhitened) strain data in each detector

asds
noise ASDs estimated in each detector at the time of the event

parameters (optional)
for injections, the true parameters of the signal (for saving; ignored for sampling)

Once this is set, the run_sampler()method draws the requested samples from the posterior conditioned on the context.
It applies some post-processing (to de-standardize the data, and to correct for the rotation of the Earth between the
network reference time and the event time), and then stores the result as a DataFrame in GWSampler.samples. The
DataFrame contains columns for each inference parameter, as well as the log probability of the sample under the
posterior model.

70 Chapter 16. Inference

dingo-gw

The GWSampler.metadata attribute contains all settings that went into producing the samples, including training
datasets, network training settings, event metadata (for real events) and possible injection parameters. Finally, the
to_samples_dataset() method returns a SamplesDataset containing all results, including the samples, settings,
and context. This can be saved easily as HDF5.

16.2 Injections

Injections (i.e., simulated data) are produced using the Injection class. It includes options for fixed or random
parameters (drawn from a prior), and it returns injections in a format that can be directly set as GWSampler.context.

class dingo.gw.injection.Injection(prior, **gwsignal_kwargs)
Bases: GWSignal

Produces injections of signals (with random or specified parameters) into stationary Gaussian noise. Output is
not whitened.

Parameters

• prior (PriorDict) – Prior used for sampling random parameters.

• gwsignal_kwargs – Arguments to be passed to GWSignal base class.

classmethod from_posterior_model_metadata(metadata)
Instantiate an Injection based on a posterior model. The prior, waveform settings, etc., will all be consistent
with what the model was trained with.

Parameters
metadata (dict) – Dict which you can get via PosteriorModel.metadata

injection(theta)
Generate an injection based on specified parameters.

This is a signal + noise consistent with the amplitude spectral density in self.asd. If self.asd is an ASD-
Dataset, then it uses a random ASD from this dataset.

Data are not whitened.

Parameters
theta (dict) – Parameters used for injection.

Returns

keys:
waveform: data (signal + noise) in each detector extrinsic_parameters: {} parameters:
waveform parameters asd (if set): amplitude spectral density for each detector

Return type
dict

random_injection()

Generate a random injection.

This is a signal + noise consistent with the amplitude spectral density in self.asd. If self.asd is an ASD-
Dataset, then it uses a random ASD from this dataset.

Data are not whitened.

Returns

16.2. Injections 71

dingo-gw

keys:
waveform: data (signal + noise) in each detector extrinsic_parameters: {} parameters:
waveform parameters asd (if set): amplitude spectral density for each detector

Return type
dict

Hint: The convenience class method from_posterior_model_metadata() instantiates an Injection with all of
the settings that went into the posterior model. To this class pass the PosteriorModel.metadata dictionary. It should pro-
duce injections that perfectly match the characteristics of the training data (waveform approximant, data conditioning,
noise characteristics, etc.). This can be very useful for testing a trained model.

Important: Repeated calls to Injection.injection(), even with the same parameters, will produce injections
with different noise realizations (which therefore lead to different posteriors). For repeated analyses of the exact same
injection (e.g., with different models or codes) it is necessary to either save the injection for re-use or fix a random seed.

72 Chapter 16. Inference

CHAPTER

SEVENTEEN

GNPE

GNPE (Gibbs- or Group-Equivariant Neural Posterior Estimation) is an algorithm that can generate significantly im-
proved results by incorporating known physical symmetries into NPE.1 The aim is to simplify the data seen by the
network by using the symmetries to transform certain parameters to “standardized” values. This simplifies the learning
task of the network. At inference time, the standardizing transform is initially unknown, so we use Gibbs sampling to
simultaneously learn the transform (along with the rest of the parameters) and apply it to simplify the data.

For gravitational waves, we use GNPE to standardize the times of arrival of the signal in the individual interferometers.
(This corresponds to translations of the time of arrival at geocenter, and approximate sky rotations.) In frequency
domain, time translations correspond to multiplication of the data by 𝑒−2𝜋𝑖𝑓Δ𝑡, and a standard NPE network would
have to learn to interpret such transformations consistent with the prior from the data. We found this to be a challenging
learning task, which limited inference performance on the other parameters. Instead, GNPE leverages our knowledge
of the time translations to build a network that is only required to interpret a much narrower window of arrival times.

We now provide a brief description of the GNPE method. Readers more interested in getting started with GNPE may
skip to Usage below.

17.1 Description of method

GNPE allows us to incorporate knowledge of joint symmetries of data and parameters. That is, if a parameter (e.g.,
coalescence time) is transformed by a certain amount (∆𝑡), then there is a corresponding transformation of the data
(multiplication by 𝑒−2𝜋𝑖𝑓Δ𝑡) such that the transformed data is equally likely to occur under the transformed parameter,

𝑝(𝑡𝑐|𝑑) = 𝑝(𝑡𝑐 +∆𝑡|𝑑 · 𝑒−2𝜋𝑖𝑓Δ𝑡).

It is based on two ideas:

17.1.1 Gibbs + NPE

Gibbs sampling is an algorithm for obtaining samples from a joint distribution 𝑝(𝑥, 𝑦) if we are able to sample directly
from each of the conditionals, 𝑝(𝑥|𝑦) and 𝑝(𝑦|𝑥). Starting from some point 𝑦0, we construct a Markov chain {(𝑥𝑖, 𝑦𝑖)}
by sampling

1. 𝑥𝑖 ∼ 𝑝(𝑥𝑖|𝑦𝑖−1),

2. 𝑦𝑖 ∼ 𝑝(𝑦𝑖|𝑥𝑖),

and repeating until the chain is converged. The stationary distribution of the Markov chain is then 𝑝(𝑥, 𝑦).

Gibbs sampling can be combined with NPE by first introducing blurred “proxy” versions of a subset of parameters,
which we denote 𝜃 i.e., 𝜃 ∼ 𝑝(𝜃|𝜃) where 𝑝(𝜃|𝜃) is defined by a blurring kernel. For example, for GWs we take

1 Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Deistler, Bernhard Schölkopf, and Jakob H. Macke. Group equivariant neural
posterior estimation. International Conference on Learning Representations, 2022. arXiv:2111.13139.

73

https://en.wikipedia.org/wiki/Gibbs_sampling
https://arxiv.org/abs/2111.13139

dingo-gw

Fig. 1: Illustration of Gibbs sampling for a distribution 𝑝(𝑥, 𝑦).

𝑡𝐼 = 𝑡𝐼 +𝜖𝐼 , where 𝜖𝐼 ∼ Unif(−1 ms, 1 ms). We then train a network to model the posterior, but now conditioned also
on 𝜃, i.e., 𝑝(𝜃|𝑑, 𝜃). We can then apply Gibbs sampling to obtain samples from the joint distribution 𝑝(𝜃, 𝜃|𝑑), since
we are able to sample individually from the conditional distributions:

• We can sample from 𝑝(𝜃|𝜃) since we defined the blurring kernel.

• We can sample from 𝑝(𝜃|𝑑, 𝜃) since we are modeling it using NPE.

Finally, we can drop 𝜃 from the samples to obtain the desired posterior samples.

The trick now is that since 𝑝(𝜃|𝑑, 𝜃) is conditional on 𝜃, we can apply any 𝜃-dependent transformation to 𝑑. Returning
to the time translations, 𝑡𝐼 is a good approximation to 𝑡𝐼 , so we apply the inverse time shift 𝑑𝐼 → 𝑑𝐼 · 𝑒2𝜋𝑖𝑓𝑡𝐼 , which
brings 𝑑𝐼 into a close approximation to having coalescence time 0 in each detector. This means that the network never
sees any data with merger time further than 1 ms from 0, greatly simplifying the learning task.

In practice, we generate many Monte Carlo chains in parallel—one for each desired sample and with different starting
points—and keep only the final sample from each chain—rather than generating one long chain. Each individual chain
in this ensemble is unlikely to converge, but if the individual chains are initialized from a distribution sufficiently close
to 𝑝(𝜃|𝑑) then the collection of final samples from each chain should be a good approximation to samples from 𝑝(𝜃, 𝜃|𝑑).

17.1.2 Group-equivariant NPE

So far we have described how Gibbs sampling together with NPE can simplify data by allowing any 𝜃-dependent
transformation of 𝑑, simplifying the data distribution. If we know the data and parameters to be equivariant under a
particular transformation, however, we can go a step further and enforce this exactly. To do so, we simply drop the
dependence of the neural density estimator on 𝜃.

For gravitational waves, the overall time translation symmetry (in each detector) of the time of coalescence at geocenter
is an exact symmetry, so we fully enforce this. The sky rotation, however, corresponds to an approximate symmetry:
it shifts the time of coalescence in each detector, but a subleading effect is to change angle of incidence on a detector
and hence the combination of polarizations observed. For this latter symmetry, we simply do not drop the proxy
dependence.

74 Chapter 17. GNPE

dingo-gw

Tip: GNPE is a generic method to incorporate symmetries into NPE:

• Any symmetry (exact or approximate) connecting data and parameters

• Any architecture, as it just requires (at most) conditioning on the proxy variables

As far as we are aware, GNPE is the only way to incorporate symmetries connecting data and parameters into archi-
tectures such as normalizing flows.

17.2 Usage

17.2.1 Training

To use GNPE for GW inference one must train two Dingo models:

1. An initialization network modeling 𝑝(𝑡𝐼 |𝑑). This gives the initial guess of the proxy variables for the staring
point of the Gibbs sampler. Since this is only modeling two or three parameters and it does not need to give
perfect results, this network can also be much smaller than typical Dingo networks.

For an HL detector network, to infer just the detector coalescence times, set this in the train configuration.

data:
inference_parameters: [H1_time, L1_time]

2. A main “GNPE” network, conditional on the proxy variables, 𝑝(𝜃|𝑑, 𝑡𝐼). Implicitly in this expression, the data
are transformed by the proxies, and the exact time-translation symmetry is enforced.

To condition this network on the correct proxies, we configure it to use GNPE in the settings file.

data:
gnpe_time_shifts:
kernel: bilby.core.prior.Uniform(minimum=-0.001, maximum=0.001)
exact_equiv: True

This sets the blurring kernel to be Unif(−1 ms, 1 ms) for all 𝑡𝐼 , and it specifies to enforce the overall time of
coalescence symmetry exactly. Dingo will determine automatically from the detectors setting which proxy
variables to condition on.

Complete example config files for both networks are provided in the /examples folder.

17.2.2 Inference

The inference script must be pointed to both trained networks in order to sample using GNPE.

dingo_analyze_event
--model model
--model_init model_init
--gps_time_event gps_time_event
--num_samples num_samples
--num_gnpe_iterations num_gnpe_iterations
--batch_size batch_size

17.2. Usage 75

dingo-gw

The number of Gibbs iterations is also specified here (typically 30 is appropriate). This script will save the final samples
from each Gibbs chain.

17.3 The GNPESampler class

The inference script above uses the GWSamplerGNPE class, which is based on GNPESampler,

class dingo.core.samplers.GNPESampler(model: PosteriorModel, init_sampler: Sampler, num_iterations:
int = 1)

Bases: Sampler

Base class for GNPE sampler. It wraps a PosteriorModel and a standard Sampler for initialization. The former
is used to generate initial samples for Gibbs sampling.

A GNPE network is conditioned on additional “proxy” context theta^, i.e.,

p(theta | theta^, d)

The theta^ depend on theta via a fixed kernel p(theta^ | theta). Combining these known distributions, this class
uses Gibbs sampling to draw samples from the joint distribution,

p(theta, theta^ | d)

The advantage of this approach is that we are allowed to perform any transformation of d that depends on theta^.
In particular, we can use this freedom to simplify the data, e.g., by aligning data to have merger times = 0 in each
detector. The merger times are unknown quantities that must be inferred jointly with all other parameters, and
GNPE provides a means to do this iteratively. See https://arxiv.org/abs/2111.13139 for additional details.

Gibbs sampling breaks access to the probability density, so this must be recovered through other means. One way
is to train an unconditional flow to represent p(theta^ | d) for fixed d based on the samples produced through the
GNPE Gibbs sampling. Starting from these, a single Gibbs iteration gives theta from the GNPE network, along
with the probability density in the joint space. This is implemented in GNPESampler provided the init_sampler
provides proxies directly and num_iterations = 1.

17.3.1 Attributes (beyond those of Sampler)

init_sampler
[Sampler] Used for providing initial samples for Gibbs sampling.

num_iterations
[int] Number of Gibbs iterations to perform.

iteration_tracker : IterationTracker not set up remove_init_outliers : float not set up

param model
type model

PosteriorModel

param init_sampler
Used for generating initial samples

type init_sampler
Sampler

param num_iterations
Number of GNPE iterations to be performed by sampler.

76 Chapter 17. GNPE

https://arxiv.org/abs/2111.13139

dingo-gw

type num_iterations
int

property context

Data on which to condition the sampler. For injections, there should be a ‘parameters’ key with truth values.

property event_metadata

Metadata for data analyzed. Can in principle influence any post-sampling parameter transformations (e.g.,
sky position correction), as well as the likelihood detector positions.

log_prob(samples: DataFrame)→ ndarray
Calculate the model log probability at specific sample points.

Parameters
samples (pd.DataFrame) – Sample points at which to calculate the log probability.

Return type
np.array of log probabilities.

property num_iterations

The number of GNPE iterations to perform when sampling.

run_sampler(num_samples: int, batch_size: int | None = None)
Generates samples and stores them in self.samples. Conditions the model on self.context if appropriate
(i.e., if the model is not unconditional).

If possible, it also calculates the log_prob and saves it as a column in self.samples. When using GNPE it
is not possible to obtain the log_prob due to the many Gibbs iterations. However, in the case of just one
iteration, and when starting from a sampler for the proxy, the GNPESampler does calculate the log_prob.

Allows for batched sampling, e.g., if limited by GPU memory. Actual sampling for each batch is performed
by _run_sampler(), which will differ for Sampler and GNPESampler.

Parameters

• num_samples (int) – Number of samples requested.

• batch_size (int, optional) – Batch size for sampler.

to_result()→ Result
Export samples, metadata, and context information to a Result instance, which can be used for saving or,
e.g., importance sampling, training an unconditional flow, etc.

Return type
Result

In addition to storing a PosteriorModel, a GNPESampler also stores a second Sampler instance, which is based on
the initialization network. When run_sampler() is called, it first generates samples from the initialization network,
perturbs them with the kernel to obtain proxy samples, and then performs num_iterations Gibbs steps to obtain the
final samples.

17.3. The GNPESampler class 77

dingo-gw

78 Chapter 17. GNPE

CHAPTER

EIGHTEEN

THE RESULT CLASS

The Result class stores the output of a Sampler run, namely a collection of samples. It contains several methods for
operating on the samples, including for importance sampling, plotting, and density recovery:

class dingo.gw.result.Result(**kwargs)
Bases: Result

A dataset class to hold a collection of gravitational-wave parameter samples and perform various operations on
them.

Compared to the base class, this class implements the domain, prior, and likelihood. It also includes a method
for sampling the binary reference phase parameter based on the other parameters and the likelihood.

Attributes:

samples
[pd.Dataframe] Contains parameter samples, as well as (possibly) log_prob, log_likelihood, weights,
log_prior, delta_log_prob_target.

domain
[Domain] The domain of the data (e.g., FrequencyDomain), needed for calculating likelihoods.

prior
[PriorDict] The prior distribution, used for importance sampling.

likelihood
[Likelihood] The Likelihood object, needed for importance sampling.

context
[dict] Context data from which the samples were produced (e.g., strain data, ASDs).

metadata
[dict] Metadata inherited from the Sampler object. This describes the neural networks and sampling
settings used.

event_metadata
[dict] Metadata for the event analyzed, including time, data conditioning, channel, and detector infor-
mation.

log_evidence
[float] Calculated log(evidence) after importance sampling.

log_evidence_std
[float (property)] Standard deviation of the log(evidence)

effective_sample_size, n_eff
[float (property)] Number of effective samples, (sum_i w_i)^2 / sum_i w_i^2

79

dingo-gw

sample_efficiency
[float (property)] Number of effective samples / Number of samples

synthetic_phase_kwargs
[dict] kwargs describing the synthetic phase sampling.

For constructing, provide either file_name, or dictionary containing data and settings entries, or neither.

Parameters

• file_name (str) – HDF5 file containing a dataset

• dictionary (dict) – Contains settings and data entries. The data keys should be the same
as save_keys

• data_keys (list) – Variables that should be saved / loaded. This allows for class to store
additional variables beyond those that are saved. Typically, this list would be provided by
any subclass.

get_samples_bilby_phase()

Convert the spin angles phi_jl and theta_jn to account for a difference in phase definition compared to Bilby.

Returns
Samples

Return type
pd.DataFrame

importance_sample(num_processes: int = 1, **likelihood_kwargs)
Calculate importance weights for samples.

Importance sampling starts with samples have been generated from a proposal distribution q(theta), in this
case a neural network model. Certain networks (i.e., non-GNPE) also provide the log probability of each
sample, which is required for importance sampling.

Given the proposal, we re-weight samples according to the (un-normalized) target distribution, which we
take to be the likelihood L(theta) times the prior pi(theta). This gives sample weights

w(theta) ~ pi(theta) L(theta) / q(theta),

where the overall normalization does not matter (and we take to have mean 1). Since q(theta) enters this
expression, importance sampling is only possible when we know the log probability of each sample.

As byproducts, this method also estimates the evidence and effective sample size of the importance sampled
points.

This method modifies the samples pd.DataFrame in-place, adding new columns for log_likelihood,
log_prior, and weights. It also stores the log_evidence as an attribute.

Parameters

• num_processes (int) – Number of parallel processes to use when calculating likelihoods.
(This is the most expensive task.)

• likelihood_kwargs (dict) – kwargs that are forwarded to the likelihood constructor.
E.g., options for marginalization.

classmethod merge(parts)
Merge several Result instances into one. Check that they are compatible, in the sense of having the same
metadata. Finally, calculate a new log evidence for the combined result.

This is useful when recombining separate importance sampling jobs.

80 Chapter 18. The Result class

dingo-gw

Parameters
parts (list[Result]) – List of sub-Results to be combined.

Return type
Combined Result.

parameter_subset(parameters)
Return a new object of the same type, with only a subset of parameters. Drops all other columns in samples
DataFrame as well (e.g., log_prob, weights).

Parameters
parameters (list) – List of parameters to keep.

Return type
Result

property pesummary_prior

The prior in a form suitable for PESummary.

By convention, Dingo stores all times relative to a reference time, typically the trigger time for an event.
The prior returned here corrects for that offset to be consistent with other codes.

property pesummary_samples

Samples in a form suitable for PESummary.

These samples are adjusted to undo certain conventions used internally by Dingo:

• Times are corrected by the reference time t_ref.

• Samples are unweighted, using a fixed random seed for sampling importance

resampling. * The spin angles phi_jl and theta_jn are transformed to account for a difference in
phase definition. * Some columns are dropped: delta_log_prob_target, log_prob

plot_corner(parameters=None, filename='corner.pdf')
Generate a corner plot of the samples.

Parameters

• parameters (list[str]) – List of parameters to include. If None, include all parameters.
(Default: None)

• filename (str) – Where to save samples.

plot_log_probs(filename='log_probs.png')
Make a scatter plot of the target versus proposal log probabilities. For the target, subtract off the log evi-
dence.

plot_weights(filename='weights.png')
Make a scatter plot of samples weights vs log proposal.

print_summary()

Display the number of samples, and (if importance sampling is complete) the log evidence and number of
effective samples.

reset_event(event_dataset)
Set the Result context and event_metadata based on an EventDataset.

If these attributes already exist, perform a comparison to check for changes. Update relevant objects appro-
priately. Note that setting context and event_metadata attributes directly would not perform these additional
checks and updates.

81

dingo-gw

Parameters
event_dataset (EventDataset) – New event to be used for importance sampling.

sample_synthetic_phase(synthetic_phase_kwargs, inverse: bool = False)
Sample a synthetic phase for the waveform. This is a post-processing step applicable to samples theta in the
full parameter space, except for the phase parameter (i.e., 14D samples). This step adds a phase parameter
to the samples based on likelihood evaluations.

A synthetic phase is sampled as follows.

• Compute and cache the modes for the waveform mu(theta, phase=0) for phase 0, organize them such
that each contribution m transforms as exp(-i * m * phase).

• Compute the likelihood on a phase grid, by computing mu(theta, phase) from the cached modes. In
principle this likelihood is exact, however, it can deviate slightly from the likelihood computed with-
out cached modes for various technical reasons (e.g., slightly different windowing of cached modes
compared to full waveform when transforming TD waveform to FD). These small deviations can be
fully accounted for by importance sampling. Note: when approximation_22_mode=True, the entire
waveform is assumed to transform as exp(2i*phase), in which case the likelihood is only exact if the
waveform is fully dominated by the (2, 2) mode.

• Build a synthetic conditional phase distribution based on this grid. We use an interpolated prior dis-
tribution bilby.core.prior.Interped, such that we can sample and also evaluate the log_prob. We add
a constant background with weight self.synthetic_phase_kwargs to the kde to make sure that we keep
a mass-covering property. With this, the importance sampling will yield exact results even when the
synthetic phase conditional is just an approximation.

Besides adding phase samples to self.samples[‘phase’], this method also modifies self.samples[‘log_prob’]
by adding the log_prob of the synthetic phase conditional.

This method modifies self.samples in place.

Parameters

• synthetic_phase_kwargs (dict) –

This should consist of the kwargs
approximation_22_mode (optional) num_processes (optional) n_grid uniform_weight
(optional)

• inverse (bool, default False) – Whether to apply instead the inverse transformation.
This is used prior to calculating the log_prob. In inverse mode, the posterior probability
over phase is calculated for given samples. It is stored in self.samples[‘log_prob’].

sampling_importance_resampling(num_samples=None, random_state=None)
Generate unweighted posterior samples from weighted ones. New samples are sampled with probability
proportional to the sample weight. Resampling is done with replacement, until the desired number of
unweighted samples is obtained.

Parameters

• num_samples (int) – Number of samples to resample.

• random_state (int or None) – Sampling seed.

Returns
Unweighted samples

Return type
pd.Dataframe

82 Chapter 18. The Result class

dingo-gw

split(num_parts)
Split the Result into a set of smaller results. The samples are evenly divided among the sub-results. Addi-
tional information (metadata, context, etc.) are copied into each.

This is useful for splitting expensive tasks such as importance sampling across multiple jobs.

Parameters
num_parts (int) – The number of parts to split the Result across.

Return type
list of sub-Results.

train_unconditional_flow(parameters, nde_settings: dict, train_dir: str | None = None, threshold_std:
float | None = inf)

Train an unconditional flow to represent the distribution of self.samples.

Parameters

• parameters (list) – List of parameters over which to train the flow. Can be a subset of
the existing parameters.

• nde_settings (dict) – Configuration settings for the neural density estimator.

• train_dir (Optional[str]) – Where to save the output of network training, e.g., logs,
checkpoints. If not provide, a temporary directory is used.

• threshold_std (Optional[float]) – Drop samples more than threshold_std standard
deviations away from the mean (in any parameter) before training the flow. This is meant
to remove outlier samples.

Return type
PosteriorModel

update_prior(prior_update)
Update the prior based on a new dict of priors. Use the existing prior for parameters not included in the
new dict.

If class samples have not been importance sampled, then save new sample weights based on the new prior.
If class samples have been importance sampled, then update the weights.

Parameters
prior_update (dict) – Priors to update. This should be of the form {key : prior_str},
where str is a string that can instantiate a prior via PriorDict(prior_update). The prior_update
is provided in this form so that it can be properly saved with the Result and later instantiated.

Following a sampler run, a Result can be obtained using Sampler.to_result(). Since Result inherits from
DingoDataset it also possesses to_file() and to_dictionary()methods for saving samples and associated meta-
data (including context data, namely event data and ASDs).

18.1 Density recovery

When sampling with GNPE, there is no direct access to the probability density 𝑞(𝜃|𝑑). This is because of the Gibbs
iterations: one only has access to the probability density of the entire chain, not just the final samples. The probability
density is, however, needed for importance sampling, since this is the proposal distribution.

The Result class contains methods to enable recovery of the probability density for a collection of samples. The
approach is as follows:

18.1. Density recovery 83

dingo-gw

1. Start from the samples {(𝜃𝑖, 𝜃𝑖)}𝑁𝑖=1 from the final Gibbs iteration, including parameters 𝜃 and proxy parameters
𝜃. By default these are included in the samples attribute generated by the Sampler.

2. Train an unconditional density estimator 𝑞(𝜃) to model the proxy parameters. This is done by (1)
using parameter_subset() to produce a new Result containing just the proxies, and (2) using
train_unconditional_flow() on this subset.

3. Generate new samples (𝜃, 𝜃) ∼ 𝑞(𝜃, 𝜃|𝑑) = 𝑞(𝜃|𝑑, 𝜃)𝑞(𝜃). This can be accomplished using GNPESampler.
sample() with num_iterations = 1 and setting the initial sampler to be the unconditional flow trained in
the previous step. Since this does not involve multiple iterations, the density is obtained as well, so importance
sampling can be performed.

Note: Density recovery can also be achieved using an unconditional density estimator for 𝜃 (trained on samples
{𝜃𝑖}𝑁𝑖=1 from GNPE). Since 𝜃 typically comprises 14 parameters (versus 2 or 3 for 𝜃) it is usually more straightforward
to learn the proxies.

18.2 Synthetic phase

It is often challenging for Dingo to learn to model the phase parameter 𝜑𝑐. For this reason, we usually marginalize over
it in training by excluding it from the list of inference_parameters. The phase is, however, required for importance
sampling unless using also a phase-marginalized likelihood (which is approximate except under special circumstances).

The Dingo gw.Result class includes a method sample_synthetic_phase() which produces a 𝜑𝑐 sample from a
𝜑𝑐-marginalized sample. It does so by evaluating the likelihood on a 𝜑𝑐-grid and then sampling from the associated
1D distribution. The log_prob value for the sample is also corrected to reflect the sampled 𝜑𝑐. Speed is ensured by
caching waveform modes and evaluating the polarizations for different 𝜑𝑐. For further details, see the Supplemental
Material of [5].

This method should be run after recovering the density, since in particular it applies a correction to the density.

18.2.1 Configuration

The method sample_synthetic_phase() takes a kwargs argument. An example configuration is

approximation_22_mode: false
n_grid: 5001
uniform_weight: 0.01
num_processes: 100

approximation_22_mode
Whether to make the approximation that only the (𝑙,𝑚) = (2, 2) mode is present, i.e., waveforms transform as
exp 2𝜋𝑖𝜑𝑐. This simplifies computations since it does not require caching of waveform modes.

n_grid
Specifies the phase grid on which the likelihoods are evaluated.

uniform_weight
Base probability level to add to ensure mass coverage.

num_processes
For parallelization of synthetic phase sampling. This is usually the most expensive part of importance sampling,
so it is advantageous to perform calculations in parallel.

84 Chapter 18. The Result class

dingo-gw

18.3 Importance sampling

Once samples are in the right form—including all relevant parameters and the log probability—importance sampling
is carried out using the importance_sample() method. It allows to specify options for using a marginalized likeli-
hood. (Time and phase marginalization are separately supported; see the documentation of dingo.gw.likelihood.
StationaryGaussianGWLikelihood .)

As with the synthetic phase, importance sampling allows for parallelization.

18.4 Plotting

The plotting methods included here are intended for quick plots for evaluating results. They include

• corner plots comparing importance sampled and proposal results;

• weights plots to evaluate performance of importance sampling; and

• log probability plots comparing target and proposal log probability.

18.3. Importance sampling 85

dingo-gw

86 Chapter 18. The Result class

CHAPTER

NINETEEN

DINGO_PIPE

Dingo includes a command-line tool dingo_pipe for automating inference tasks. This is based very closely on the
bilby_pipe package, with suitable modifications. The basic usage is to pass a .ini file containing event information
and run configuration settings, e.g.,

dingo_pipe GW150914.ini

dingo_pipe then executes various commands for preparing data, sampling from networks, importance sampling, and
plotting. It can execute commands locally or on a cluster using a DAG. This documentation will only describe the
relevant differences compared to bilby_pipe, and we refer the reader to the bilby_pipe documentation for additional
information.

Listing 1: Example GW150914.ini file. This is also available in the ex-
amples/ directory.

##
Job submission arguments
##

local = True
accounting = dingo
request-cpus-importance-sampling = 16
n-parallel = 4
sampling-requirements = [TARGET.CUDAGlobalMemoryMb>40000]
extra-lines = [+WantsGPUNode = True]
simple-submission = false

##
Sampler arguments
##

model-init = /data/sgreen/dingo-experiments/XPHM/O1_init/model_stage_1.pt
model = /data/sgreen/dingo-experiments/XPHM/testing_inference/model.pt
device = 'cuda'
num-gnpe-iterations = 30
num-samples = 50000
batch-size = 50000
recover-log-prob = true
importance-sample = true
prior-dict = {
luminosity_distance = bilby.gw.prior.UniformComovingVolume(minimum=100, maximum=2000,␣
→˓name='luminosity_distance'),

(continues on next page)

87

https://lscsoft.docs.ligo.org/bilby_pipe/master/index.html

dingo-gw

(continued from previous page)

}

##
Data generation arguments
##

trigger-time = GW150914
label = GW150914
outdir = outdir_GW150914
channel-dict = {H1:GWOSC, L1:GWOSC}
psd-length = 128
sampling-frequency = 2048.0
importance-sampling-updates = {'duration': 4.0}

##
Calibration marginalization arguments
##

calibration-model = CubicSpline
spline-calibration-envelope-dict = {H1: GWTC1_GW150914_H_CalEnv.txt, L1: GWTC1_GW150914_
→˓L_CalEnv.txt}
spline-calibration-nodes = 10
spline-calibration-curves = 1000

##
Plotting arguments
##

plot-corner = true
plot-weights = true
plot-log-probs = true

The main difference compared to a bilby_pipe .ini file is that one specifies trained Dingo models rather than data
conditioning and prior settings. The reason for this is that such settings have already been incorporated into training of
the model. It is therefore not possible to change them when sampling from the Dingo model. Understandably, this could
cause inconvenience if one is interested in a different prior or data conditioning settings. As a solution, Dingo enables
the changing of such settings during importance sampling, which applies the new settings for likelihood evaluations.

Important: For dingo_pipe it is necessary to specify a trained Dingo model instead of sampler settings such as prior
and data conditioning.

88 Chapter 19. dingo_pipe

dingo-gw

19.1 Data generation

The first step is to download and prepare gravitational-wave data. In the example, dingo_pipe (using bilby_pipe rou-
tines) downloads the event and PSD data at the time of GW150914. It then prepares the data based on conditioning set-
tings in the specified Dingo model. If other conflicting conditioning settings are provided (e.g., sampling_frequency
= 2048.0), dingo_pipe stores these in the dictionary importance_sampling_updates (which can also be specified
explicitly). These settings are ignored for now, and only applied later for calculating the likelihood in importance
sampling.

The prepared event data and ASD are stored in a dingo.gw.data.event_dataset.EventDataset, which is then
saved to disk in HDF5 format.

Note: Dingo models are typically trained using Welch PSDs. For this reason we do not recommend using a BayesWave
PSD for initial sampling. Rather, a BayesWave PSD should be specified within the importance_sampling_updates
dictionary, so that it will be used during importance sampling.

19.2 Sampling

The next step is sampling from the Dingo model. The model is loaded into a GWSampler or GWSamplerGNPE object.
(If using GNPE it is necessary to specify a model-init.) The Sampler context is then set from the EventDataset
prepared in the previous step. num-samples samples are then generated in batches of size batch-size. The samples
(and context) are stored in a Result object and saved in HDF5 format.

If using GNPE, one can optionally specify num-gnpe-iterations (it defaults to 30). Importantly, obtaining the
log probability when using GNPE requires an extra step of training an unconditional flow. This is done using the
recover-log-prob flag, which defaults to True. The default density recovery settings can be overwritten by providing
a density-recovery-settings dictionary in the .ini file.

Since sampling uses GPU hardware, there is an additional key sampling-requirements for HTCondor requirements
during the sampling stage. This is intended for specifying GPU requirements such as memory or CUDA version.

19.3 Importance sampling

For importance sampling, the Result saved in the previous step is loaded. Since this contains the strain data and ASDs, as
well as all settings used for training the network, the likelihood and prior can be evaluated for each sample point. If it is
necessary to change data conditioning or PSD for importance sampling (i.e., if the importance-sampling-updates
dictionary is non-empty), then a second data generation step is first carried using the new settings, and used as im-
portance sampling context. The importance sampled result is finally saved as HDF5, including the estimated Bayesian
evidence.

If a prior-dict is specified in the .ini file, then this will be used for the importance sampling prior. One example
where this is useful is for the luminosity distance prior. Indeed, Dingo tends to train better using a uniform prior over
luminosity distance, but physically one would prefer a uniform in volume prior. By specifying a prior-dict this
change can be made in importance sampling.

Caution: If extending the prior support during importance sampling, be sure that the posterior does not rail up
against the prior boundary being extended.

19.1. Data generation 89

dingo-gw

By default, dingo_pipe assumes that it is necessary to sample the phase synthetically, so it will do so before importance
sampling. This can be turned off by passing an empty dictionary to importance-sampling-settings. Note that
importance sampling itself can be switched off by setting the importance-sample flag to False (it defaults to True).

Importance sampling (including synthetic phase sampling) is an expensive step, so dingo_pipe allows for paralleliza-
tion: this step is split over n-parallel jobs, each of which uses request-cpus-importance-sampling processes.
In the backend, this makes use of the Result split() and merge() methods.

19.3.1 Calibration marginalization

Settings related to calibration are used to marginalize over calibration uncertainty during importance sampling.

calibration-model
None or “CubicSpline”. If “CubicSpline”, perform calibration marginalization using a cubic spline calibration
model. If None do not perform calibration marginalization. (Default: None)

spline-calibration-envelope-dict
Dictionary pointing to the spline calibration envelope files. This is required if calibration-model is “CubicSpline”.

spline-calibration-nodes
Number of calibration nodes. (Default: 10)

spline-calibration-curves
Number of calibration curves to use for marginalization. (Default: 1000)

19.4 Plotting

The standard Result plots are turned on using the plot-corner, plot-weights, and plot-log-probs flags.

19.5 Additional options

extra-lines
Additional lines for all submission scripts. This could be useful for particular cluster configurations.

simple-submission
Strip the keys accounting_tag, getenv, priority, and universe from submission scripts. Again useful for
particular cluster configurations.

90 Chapter 19. dingo_pipe

CHAPTER

TWENTY

DINGO

20.1 dingo package

20.1.1 Subpackages

dingo.asimov package

Submodules

dingo.asimov.asimov module

Module contents

dingo.core package

Subpackages

dingo.core.density package

Submodules

dingo.core.density.interpolation module

dingo.core.density.interpolation.interpolated_log_prob(sample_points, values, evaluation_point)
Given a distribution discretized on a grid, return a sample and the log prob from an interpolated distribution.
Wraps the bilby.core.prior.Interped class.

Parameters

• sample_points (np.ndarray) – x values for samples

• values (np.ndarray) – y values for samples. The distribution does not have to be initially
normalized, although the final log_prob will be.

• evaluation_point (float) – x value at which to evaluate log_prob.

Returns
float

Return type
log_prob

91

dingo-gw

dingo.core.density.interpolation.interpolated_log_prob_multi(sample_points, values,
evaluation_points, num_processes:
int = 1)

Given a distribution discretized on a grid, the log prob at a specific point using an interpolated distribution.
Wraps the bilby.core.prior.Interped class. Works with multiprocessing.

Parameters

• sample_points (np.ndarray, shape (N)) – x values for samples

• values (np.ndarray, shape (B, N)) – y values for samples. The distributions do not
have to be initially normalized, although the final log_probs will be. B = batch dimension.

• evaluation_points (np.ndarray, shape (B)) – x values at which to evaluate
log_prob.

• num_processes (int) – Number of parallel processes to use.

Returns
(np.ndarray, np.ndarray)

Return type
sample and log_prob arrays, each of length B

dingo.core.density.interpolation.interpolated_sample_and_log_prob(sample_points, values)
Given a distribution discretized on a grid, return a sample and the log prob from an interpolated distribution.
Wraps the bilby.core.prior.Interped class.

Parameters

• sample_points (np.ndarray) – x values for samples

• values (np.ndarray) – y values for samples. The distribution does not have to be initially
normalized, although the final log_prob will be.

Returns
(float, float)

Return type
sample and log_prob

dingo.core.density.interpolation.interpolated_sample_and_log_prob_multi(sample_points, values,
num_processes: int =
1)

Given a distribution discretized on a grid, return a sample and the log prob from an interpolated distribution.
Wraps the bilby.core.prior.Interped class. Works with multiprocessing.

Parameters

• sample_points (np.ndarray, shape (N)) – x values for samples

• values (np.ndarray, shape (B, N)) – y values for samples. The distributions do not
have to be initially normalized, although the final log_probs will be. B = batch dimension.

• num_processes (int) – Number of parallel processes to use.

Returns
(np.ndarray, np.ndarray)

Return type
sample and log_prob arrays, each of length B

92 Chapter 20. dingo

dingo-gw

dingo.core.density.nde_settings module

Default settings for unconditional density estimation

dingo.core.density.nde_settings.get_default_nde_settings_3d(device='cpu', num_workers=0,
inference_parameters=None)

dingo.core.density.unconditional_density_estimation module

class dingo.core.density.unconditional_density_estimation.SampleDataset(data)
Bases: Dataset

Dataset class for unconditional density estimation. This is required, since the training method of
dingo.core.models.PosteriorModel expects a tuple of (theta, *context) as output of the DataLoader, but here
we have no context, so len(context) = 0. This SampleDataset therefore returns a tuple (theta,) instead of just
theta.

dingo.core.density.unconditional_density_estimation.parse_args()

dingo.core.density.unconditional_density_estimation.train_unconditional_density_estimator(result,
set-
tings:
dict,
train_dir:
str)

Train unconditional density estimator for a given set of samples.

Parameters

• samples (pd.DataFrame) – DataFrame containing the samples to train the density estima-
tor on.

• settings (dict) – Dictionary containing the settings for the density estimator.

• train_dir (str) – Path to the directory where the trained model should be saved.

Returns
model – trained density estimator

Return type
PosteriorModel

Module contents

This submodule contains tools for density estimation from samples. This is required for instance to recover the posterior
density from GNPE samples, since the density is intractable with GNPE.

20.1. dingo package 93

dingo-gw

dingo.core.models package

Submodules

dingo.core.models.posterior_model module

TODO: Docstring

class dingo.core.models.posterior_model.PosteriorModel(model_filename: str | None = None,
metadata: dict | None = None,
initial_weights: dict | None = None, device:
str = 'cuda', load_training_info: bool =
True)

Bases: object

TODO: Docstring

initialize_model:

initialize the NDE (including embedding net) as posterior model

initialize_training:

initialize for training, that includes storing the epoch, building an optimizer and a learning rate scheduler

save_model:

save the model, including all information required to rebuild it, except for the builder function

load_model:

load and build a model from a file

train_model:

train the model

inference:

perform inference

Parameters

• model_builder (Callable) – builder function for the model, self.model =
model_builder(**model_kwargs)

• model_kwargs (dict = None) – kwargs for for the model, self.model =
model_builder(**model_kwargs)

• model_filename (str = None) – path to filename of loaded model

• optimizer_kwargs (dict = None) – kwargs for optimizer

• scheduler_kwargs (dict = None) – kwargs for scheduler

• init_for_training (bool = False) – flag whether initialization for training (e.g., opti-
mizer) required

• metadata (dict = None) – dict with metadata, used to save dataset_settings and
train_settings

initialize_model()

Initialize a model for the posterior by calling the self.model_builder with self.model_kwargs.

94 Chapter 20. dingo

dingo-gw

initialize_optimizer_and_scheduler()

Initializes the optimizer and scheduler with self.optimizer_kwargs and self.scheduler_kwargs, respectively.

load_model(model_filename: str, load_training_info: bool = True, device: str = 'cuda')
Load a posterior model from the disk.

Parameters

• model_filename (str) – path to saved model

• load_training_info (bool #TODO: load information for training) – speci-
fies whether information required to proceed with training is loaded, e.g. optimizer state
dict

model_to_device(device)
Put model to device, and set self.device accordingly.

sample(*x, batch_size=None, get_log_prob=False)
Sample from posterior model, conditioned on context x. x is expected to have a batch dimension, i.e., to
obtain N samples with additional context requires x = x_.expand(N, *x_.shape).

This method takes care of the batching, makes sure that self.model is in evaluation mode and disables
gradient computation.

Parameters

• *x – input context to the neural network; has potentially multiple elements for, e.g., gnpe
proxies

• batch_size (int = None) – batch size for sampling

• get_log_prob (bool = False) – if True, also return log probability along with the sam-
ples

Returns
samples – samples from posterior model

Return type
torch.Tensor

save_model(model_filename: str, save_training_info: bool = True)
Save the posterior model to the disk.

Parameters

• model_filename (str) – filename for saving the model

• save_training_info (bool) – specifies whether information required to proceed with
training is saved, e.g. optimizer state dict

train(train_loader: DataLoader, test_loader: DataLoader, train_dir: str, runtime_limits: object | None =
None, checkpoint_epochs: int | None = None, use_wandb=False, test_only=False)

Parameters

• train_loader –

• test_loader –

• train_dir –

• runtime_limits –

• checkpoint_epochs –

20.1. dingo package 95

dingo-gw

• use_wandb –

• test_only (bool = False) – if True, training is skipped

dingo.core.models.posterior_model.get_model_callable(model_type: str)

dingo.core.models.posterior_model.test_epoch(pm, dataloader)

dingo.core.models.posterior_model.train_epoch(pm, dataloader)

Module contents

dingo.core.nn package

Submodules

dingo.core.nn.enets module

Implementation of embedding networks.

class dingo.core.nn.enets.DenseResidualNet(input_dim: int, output_dim: int, hidden_dims:
~typing.Tuple, activation: ~typing.Callable = <function
elu>, dropout: float = 0.0, batch_norm: bool = True)

Bases: Module

A nn.Module consisting of a sequence of dense residual blocks. This is used to embed high dimensional input
to a compressed output. Linear resizing layers are used for resizing the input and output to match the first and
last hidden dimension, respectively.

Module specs

input dimension: (batch_size, input_dim) output dimension: (batch_size, output_dim)

param input_dim
dimension of the input to this module

type input_dim
int

param output_dim
output dimension of this module

type output_dim
int

param hidden_dims
tuple with dimensions of hidden layers of this module

type hidden_dims
tuple

param activation
activation function used in residual blocks

type activation
callable

96 Chapter 20. dingo

dingo-gw

param dropout
dropout probability for residual blocks used for reqularization

type dropout
float

param batch_norm
flag that specifies whether to use batch normalization

type batch_norm
bool

forward(x)
Define the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

class dingo.core.nn.enets.LinearProjectionRB(input_dims: List[int], n_rb: int, V_rb_list: Tuple | None)
Bases: Module

A compression layer that reduces the input dimensionality via projection onto a reduced basis. The input data
is of shape (batch_size, num_blocks, num_channels, num_bins). Each of the num_blocks blocks (for GW use
case: block=detector) is treated independently.

A single block consists of 1D data with num_bins bins (e.g. GW use case: num_bins=number of frequency
bins). It has num_channels>=2 different channels, channel 0 and 1 store the real and imaginary part of the
signal. Channels with index >=2 are used for auxiliary signals (such as PSD for GW use case).

This layer compresses the complex signal in channels 0 and 1 to n_rb reduced-basis (rb) components. This is
achieved by initializing the weights of this layer with the rb matrix V, such that the (2*n_rb) dimensional output
of each block is the concatenation of the real and imaginary part of the reduced basis projection of the complex
signal in channel 0 and 1. The projection of the auxiliary channels with index >=2 onto these components is
initialized with 0.

Module specs

input dimension: (batch_size, num_blocks, num_channels, num_bins) output dimension:
(batch_size, 2 * n_rb * num_blocks)

param input_dims
dimensions of input batch, omitting batch dimension input_dims = [num_blocks, num_channels,
num_bins]

type input_dims
list

param n_rb
number of reduced basis elements used for projection the output dimension of the layer is 2 *
n_rb * num_blocks

type n_rb
int

20.1. dingo package 97

dingo-gw

param V_rb_list
tuple with V matrices of the reduced basis SVD projection, convention for SVD matrix decom-
position: U @ s @ V^h; if None, layer is not initialized with reduced basis projection, this is
useful when loading a saved model

type V_rb_list
tuple of np.arrays, or None

forward(x)
Define the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

init_layers(V_rb_list)
Loop through layers and initialize them individually with the corresponding rb projection. V_rb_list is a
list that contains the rb matrix V for each block. Each matrix V in V_rb_list is represented with a numpy
array of shape (self.num_bins, num_el), where num_el >= self.n_rb.

property input_dim

property output_dim

test_dimensions(V_rb_list)
Test if input dimensions to this layer are consistent with each other, and the reduced basis matrices V.

class dingo.core.nn.enets.ModuleMerger(module_list: Tuple)
Bases: Module

This is a wrapper used to process multiple different kinds of context information collected in x = (x_0, x_1,
. . .). For each kind of context information x_i, an individual embedding network is provided in enets = (enet_0,
enet_1, . . .). The embedded output of the forward method is the concatenation of the individual embeddings
enet_i(x_i).

In the GW use case, this wrapper can be used to embed the high-dimensional signal input into a lower dimensional
feature vector with a large embedding network, while applying an identity embedding to the time shifts.

Module specs

input dimension: (batch_size, . . .), (batch_size, . . .), . . . output dimension: (batch_size, ?)

param module_list
nn.Modules for embedding networks, use torch.nn.Identity for identity mappings

type module_list
tuple

forward(*x)
Define the computation performed at every call.

Should be overridden by all subclasses.

98 Chapter 20. dingo

dingo-gw

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

dingo.core.nn.enets.create_enet_with_projection_layer_and_dense_resnet(input_dims: List[int],
V_rb_list: Tuple | None,
output_dim: int,
hidden_dims: Tuple,
svd: dict, activation: str
= 'elu', dropout: float =
0.0, batch_norm: bool
= True, added_context:
bool = False)

Builder function for 2-stage embedding network for 1D data with multiple blocks and channels. Module 1 is a
linear layer initialized as the projection of the complex signal onto reduced basis components via the LinearPro-
jectionRB, where the blocks are kept separate. See docstring of LinearProjectionRB for details. Module 2 is a
sequence of dense residual layers, that is used to further reduce the dimensionality.

The projection requires the complex signal to be represented via the real part in channel 0 and the imaginary
part in channel 1. Auxiliary signals may be contained in channels with indices => 2. In GW use case a block
corresponds to a detector and channel 2 is used for ASD information.

If added_context = True, the 2-stage embedding network described above is merged with an identity mapping
via ModuleMerger. Then, the expected input is not x with x.shape = (batch_size, num_blocks, num_channels,
num_bins), but rather the tuple *(x, z), where z is additional context information. The output of the full module
is then the concatenation of enet(x) and z. In GW use case, this is used to concatenate the applied time shifts z
to the embedded feature vector of the strain data enet(x).

Module specs

For added_context == False:
input dimension: (batch_size, num_blocks, num_channels, num_bins) output dimension: (batch_size, out-
put_dim)

For added_context == True:

input dimension: (batch_size, num_blocks, num_channels, num_bins),
(batch_size, N)

output dimension: (batch_size, output_dim + N)

param input_dims
list dimensions of input batch, omitting batch dimension input_dims = (num_blocks,
num_channels, num_bins)

param n_rb
int number of reduced basis elements used for projection the output dimension of the layer is 2 *
n_rb * num_blocks

param V_rb_list
tuple of np.arrays, or None tuple with V matrices of the reduced basis SVD projection, convention
for SVD matrix decomposition: U @ s @ V^h; if None, layer is not initialized with reduced basis
projection, this is useful when loading a saved model

20.1. dingo package 99

dingo-gw

param output_dim
int output dimension of the full module

param hidden_dims
tuple tuple with dimensions of hidden layers of module 2

param activation
str str that specifies activation function used in residual blocks

param dropout
float dropout probability for residual blocks used for reqularization

param batch_norm
bool flag that specifies whether to use batch normalization

param added_context
bool if set to True, additional context z is concatenated to the embedded feature vector enet(x);
note that in this case, the expected input is a tuple with 2 elements, input = (x, z) rather than just
the tensor x.

return
nn.Module

dingo.core.nn.nsf module

Implementation of the neural spline flow (NSF). Most of this code is adapted from the uci.py example from https:
//github.com/bayesiains/nsf.

class dingo.core.nn.nsf.FlowWrapper(flow: Flow, embedding_net: Module | None = None)
Bases: Module

This class wraps the neural spline flow. It is required for multiple reasons. (i) some embedding networks take
tuples as input, which is not supported by the nflows package. (ii) paralellization across multiple GPUs requires
a forward method, but the relevant flow method for training is log_prob.

Parameters

• flow – flows.base.Flow

• embedding_net – nn.Module

forward(y, *x)
Define the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

log_prob(y, *x)

sample(*x, num_samples=1)

sample_and_log_prob(*x, num_samples=1)

100 Chapter 20. dingo

https://github.com/bayesiains/nsf
https://github.com/bayesiains/nsf

dingo-gw

dingo.core.nn.nsf.autocomplete_model_kwargs_nsf(model_kwargs, data_sample)
Autocomplete the model kwargs from train_settings and data_sample from the dataloader: (*) set input dimen-
sion of embedding net to shape of data_sample[1] (*) set dimension of nsf parameter space to len(data_sample[0])
(*) set added_context flag of embedding net if required for gnpe proxies (*) set context dim of nsf to output dim
of embedding net + gnpe proxy dim

Parameters

• train_settings – dict train settings as loaded from .yaml file

• data_sample – list Sample from dataloader (e.g., wfd[0]) used for autocomplection. Should
be of format [parameters, GW data, gnpe_proxies], where the last element is only there is
gnpe proxies are required.

Returns
model_kwargs: dict updated, autocompleted model_kwargs

dingo.core.nn.nsf.create_base_transform(i: int, param_dim: int, context_dim: int | None = None,
hidden_dim: int = 512, num_transform_blocks: int = 2,
activation: str = 'relu', dropout_probability: float = 0.0,
batch_norm: bool = False, num_bins: int = 8, tail_bound: float
= 1.0, apply_unconditional_transform: bool = False,
base_transform_type: str = 'rq-coupling')

Build a base NSF transform of y, conditioned on x.

This uses the PiecewiseRationalQuadraticCoupling transform or the MaskedPiecewiseRationalQuadraticAutore-
gressiveTransform, as described in the Neural Spline Flow paper (https://arxiv.org/abs/1906.04032).

Code is adapted from the uci.py example from https://github.com/bayesiains/nsf.

A coupling flow fixes half the components of y, and applies a transform to the remaining components, condi-
tioned on the fixed components. This is a restricted form of an autoregressive transform, with a single split into
fixed/transformed components.

The transform here is a neural spline flow, where the flow is parametrized by a residual neural network that
depends on y_fixed and x. The residual network consists of a sequence of two-layer fully-connected blocks.

Parameters

• i – int index of transform in sequence

• param_dim – int dimensionality of y

• context_dim – int = None dimensionality of x

• hidden_dim – int = 512 number of hidden units per layer

• num_transform_blocks – int = 2 number of transform blocks comprising the transform

• activation – str = ‘relu’ activation function

• dropout_probability – float = 0.0 dropout probability for regularization

• batch_norm – bool = False whether to use batch normalization

• num_bins – int = 8 number of bins for the spline

• tail_bound – float = 1.

• apply_unconditional_transform – bool = False whether to apply an unconditional
transform to fixed components

• base_transform_type – str = ‘rq-coupling’ type of base transform, one of {rq-coupling,
rq-autoregressive}

20.1. dingo package 101

https://arxiv.org/abs/1906.04032
https://github.com/bayesiains/nsf

dingo-gw

Returns
Transform the NSF transform

dingo.core.nn.nsf.create_linear_transform(param_dim: int)
Create the composite linear transform PLU.

Parameters
param_dim – int dimension of the parameter space

Returns
nde.Transform the linear transform PLU

dingo.core.nn.nsf.create_nsf_model(input_dim: int, context_dim: int, num_flow_steps: int,
base_transform_kwargs: dict, embedding_net_builder: Callable | str |
None = None, embedding_net_kwargs: dict | None = None)

Build NSF model. This models the posterior distribution p(y|x).

The model consists of

• a base distribution (StandardNormal, dim(y))

• a sequence of transforms, each conditioned on x

Parameters

• input_dim – int, dimensionality of y

• context_dim – int, dimensionality of the (embedded) context

• num_flow_steps – int, number of sequential transforms

• base_transform_kwargs – dict, hyperparameters for transform steps

• embedding_net_builder – Callable=None, build function for embedding network TODO

• embedding_net_kwargs – dict=None, hyperparameters for embedding network

Returns
Flow the NSF (posterior model)

dingo.core.nn.nsf.create_nsf_with_rb_projection_embedding_net(nsf_kwargs: dict,
embedding_net_kwargs: dict,
initial_weights: dict | None =
None)

Builds a neural spline flow with an embedding network that consists of a reduced basis projection followed by a
residual network. Optionally initializes the embedding network weights.

Parameters

• nsf_kwargs (dict) – kwargs for neural spline flow

• embedding_net_kwargs (dict) – kwargs for emebedding network

• initial_weights (dict) – Dictionary containing the initial weights for the SVD projec-
tion. This should have one key ‘V_rb_list’, with value a list of SVD V matrices (one for each
detector).

Returns
Neural spline flow model

Return type
nn.Module

102 Chapter 20. dingo

dingo-gw

dingo.core.nn.nsf.create_nsf_wrapped(**kwargs)
Wraps the NSF model in a FlowWrapper. This is required for parallel training, and wraps the log_prob method
as a forward method.

dingo.core.nn.nsf.create_transform(num_flow_steps: int, param_dim: int, context_dim: int,
base_transform_kwargs: dict)

Build a sequence of NSF transforms, which maps parameters y into the base distribution u (noise). Transforms
are conditioned on context data x.

Note that the forward map is f^{-1}(y, x).

Each step in the sequence consists of

• A linear transform of y, which in particular permutes components

• A NSF transform of y, conditioned on x.

There is one final linear transform at the end.

Parameters

• num_flow_steps – int, number of transforms in sequence

• param_dim – int, dimensionality of parameter space (y)

• context_dim – int, dimensionality of context (x)

• base_transform_kwargs – int hyperparameters for NSF step

Returns
Transform the NSF transform sequence

Module contents

dingo.core.utils package

Submodules

dingo.core.utils.condor_utils module

dingo.core.utils.condor_utils.copy_logfiles(log_dir, epoch, name='info', suffixes=('.err', '.log', '.out'))

dingo.core.utils.condor_utils.copyfile(src, dst)

dingo.core.utils.condor_utils.create_submission_file(train_dir, filename='submission_file.sub')
TODO: documentation :param train_dir: :param filename: :return:

dingo.core.utils.condor_utils.create_submission_file_and_submit_job(train_dir, file-
name='submission_file.sub')

TODO: documentation :param train_dir: :param filename: :return:

dingo.core.utils.condor_utils.resubmit_condor_job(train_dir, train_settings, epoch)
TODO: documentation :param train_dir: :param train_settings: :param epoch: :return:

20.1. dingo package 103

dingo-gw

dingo.core.utils.gnpeutils module

class dingo.core.utils.gnpeutils.IterationTracker(data=None, store_data=False)
Bases: object

property pvalue_min

update(new_data)
Append new_data to self.data.

Parameters
new_data (dict) – dict with numpy arrays to append to data

dingo.core.utils.logging_utils module

dingo.core.utils.logging_utils.check_directory_exists_and_if_not_mkdir(directory, logger)
Checks if the given directory exists and creates it if it does not exist

Parameters

• directory (str) – Name of the directory

• bilby-pipe (Borrowed from) –

dingo.core.utils.logging_utils.setup_logger(outdir=None, label=None, log_level='INFO')
Setup logging output: call at the start of the script to use

Parameters

• outdir (str) – If supplied, write the logging output to outdir/label.log

• label (str) – If supplied, write the logging output to outdir/label.log

• log_level (str, optional) – [‘debug’, ‘info’, ‘warning’] Either a string from the
list above, or an integer as specified in https://docs.python.org/2/library/logging.html#
logging-levels

• bilby-pipe (Borrowed from) –

dingo.core.utils.misc module

dingo.core.utils.misc.get_version()

dingo.core.utils.misc.recursive_check_dicts_are_equal(dict_a, dict_b)

dingo.core.utils.plotting module

dingo.core.utils.plotting.plot_corner_multi(samples, weights=None, labels=None,
filename='corner.pdf', **kwargs)

Generate a corner plot for multiple posteriors.

Parameters

• samples (list[pd.DataFrame]) – List of sample sets. The DataFrame column names are
used as parameter labels.

104 Chapter 20. dingo

https://docs.python.org/2/library/logging.html#logging-levels
https://docs.python.org/2/library/logging.html#logging-levels

dingo-gw

• weights (list[np.ndarray or None] or None) – List of weights sets. The length of
each array should be the same as the length of the corresponding samples.

• labels (list[str or None] or None) – Labels for the posteriors.

• filename (str) – Where to save samples.

• **kwargs – Forwarded to corner.corner.

dingo.core.utils.pt_to_hdf5 module

dingo.core.utils.pt_to_hdf5.main()

dingo.core.utils.pt_to_hdf5.parse_args()

dingo.core.utils.torchutils module

dingo.core.utils.torchutils.build_train_and_test_loaders(dataset: Dataset, train_fraction: float,
batch_size: int, num_workers: int)

Split the dataset into train and test sets, and build corresponding DataLoaders. The random split uses a fixed
seed for reproducibility.

Parameters

• dataset (torch.utils.data.Dataset) –

• train_fraction (float) – Fraction of dataset to use for training. The remainder is used
for testing. Should lie between 0 and 1.

• batch_size (int) –

• num_workers (int) –

Return type
(train_loader, test_loader)

dingo.core.utils.torchutils.fix_random_seeds(_)
Utility function to set random seeds when using multiple workers for DataLoader.

dingo.core.utils.torchutils.forward_pass_with_unpacked_tuple(model: Module, x: Tuple | Tensor)
Performs forward pass of model with input x. If x is a tuple, it return y = model(*x), else it returns y = model(x).
:param model: nn.Module

model for forward pass

Parameters
x – Union[Tuple, torch.Tensor] input for forward pass

Returns
torch.Tensor output of the forward pass, either model(*x) or model(x)

dingo.core.utils.torchutils.get_activation_function_from_string(activation_name: str)
Returns an activation function, based on the name provided.

Parameters
activation_name – str name of the activation function, one of {‘elu’, ‘relu’, ‘leaky_rely’}

Returns
function corresponding activation function

20.1. dingo package 105

dingo-gw

dingo.core.utils.torchutils.get_lr(optimizer)
Returns a list with the learning rates of the optimizer.

dingo.core.utils.torchutils.get_number_of_model_parameters(model: Module, requires_grad_flags:
tuple = (True, False))

Counts parameters of the module. The list requires_grad_flag can be used to specify whether all parameters
should be counted, or only those with requires_grad = True or False. :param model: nn.Module

model

Parameters
requires_grad_flags – tuple tuple of bools, for requested requires_grad flags

Returns
number of parameters of the model with requested required_grad flags

dingo.core.utils.torchutils.get_optimizer_from_kwargs(model_parameters: Iterable,
**optimizer_kwargs)

Builds and returns an optimizer for model_parameters. The type of the optimizer is determined by kwarg type,
the remaining kwargs are passed to the optimizer.

Parameters

• model_parameters (Iterable) – iterable of parameters to optimize or dicts defining pa-
rameter groups

• optimizer_kwargs – kwargs for optimizer; type needs to be one of [adagrad, adam, adamw,
lbfgs, RMSprop, sgd], the remaining kwargs are used for specific optimizer kwargs, such as
learning rate and momentum

Return type
optimizer

dingo.core.utils.torchutils.get_scheduler_from_kwargs(optimizer: Optimizer, **scheduler_kwargs)
Builds and returns an scheduler for optimizer. The type of the scheduler is determined by kwarg type, the
remaining kwargs are passed to the scheduler.

Parameters

• optimizer (torch.optim.optimizer.Optimizer) – optimizer for which the scheduler
is used

• scheduler_kwargs – kwargs for scheduler; type needs to be one of [step, cosine, re-
duce_on_plateau], the remaining kwargs are used for specific scheduler kwargs, such as
learning rate and momentum

Return type
scheduler

dingo.core.utils.torchutils.perform_scheduler_step(scheduler, loss=None)
Wrapper for scheduler.step(). If scheduler is ReduceLROnPlateau, then scheduler.step(loss) is called, if not,
scheduler.step().

Parameters

• scheduler – scheduler for learning rate

• loss – validation loss

106 Chapter 20. dingo

dingo-gw

dingo.core.utils.torchutils.set_requires_grad_flag(model, name_startswith=None,
name_contains=None, requires_grad=True)

Set param.requires_grad of all model parameters with a name starting with name_startswith, or name containing
name_contains, to requires_grad.

dingo.core.utils.torchutils.split_dataset_into_train_and_test(dataset, train_fraction)
Splits dataset into a trainset of size int(train_fraction * len(dataset)), and a testset with the remainder. Uses fixed
random seed for reproducibility.

Parameters

• dataset (torch.utils.data.Datset) – dataset to be split

• train_fraction (float) – fraction of the dataset to be used for trainset

Return type
trainset, testset

dingo.core.utils.torchutils.torch_detach_to_cpu(x)

dingo.core.utils.trainutils module

class dingo.core.utils.trainutils.AvgTracker

Bases: object

get_avg()

update(x, n=1)

class dingo.core.utils.trainutils.LossInfo(epoch, len_dataset, batch_size, mode='Train', print_freq=1)
Bases: object

get_avg()

print_info(batch_idx)

update(loss, n)

update_timer(timer_mode='Dataloader')

class dingo.core.utils.trainutils.RuntimeLimits(max_time_per_run: float | None = None,
max_epochs_per_run: int | None = None,
max_epochs_total: int | None = None, epoch_start:
int | None = None)

Bases: object

Keeps track of the runtime limits (time limit, epoch limit, max. number of epochs for model).

Parameters

• max_time_per_run (float = None) – maximum time for run, in seconds [soft limit, break
only after full epoch]

• max_epochs_per_run (int = None) – maximum number of epochs for run

• max_epochs_total (int = None) – maximum total number of epochs for model

• epoch_start (int = None) – start epoch of run

20.1. dingo package 107

dingo-gw

limits_exceeded(epoch: int | None = None)
Check whether any of the runtime limits are exceeded.

Parameters
epoch (int = None) –

Returns
limits_exceeded – flag whether runtime limits are exceeded and run should be stopped; if
limits_exceeded = True, this prints a message for the reason

Return type
bool

local_limits_exceeded(epoch: int | None = None)
Check whether any of the local runtime limits are exceeded. Local runtime limits include
max_epochs_per_run and max_time_per_run, but not max_epochs_total.

Parameters
epoch (int = None) –

Returns
limits_exceeded – flag whether local runtime limits are exceeded

Return type
bool

dingo.core.utils.trainutils.copyfile(src, dst)
copy src to dst. :param src: :param dst: :return:

dingo.core.utils.trainutils.save_model(pm, log_dir, model_prefix='model', checkpoint_epochs=None)
Save model to <model_prefix>_latest.pt in log_dir. Additionally, all checkpoint_epochs a permanent checkpoint
is saved.

Parameters

• pm – model to be saved

• log_dir (str) – log directory, where model is saved

• model_prefix (str = 'model') – prefix for name of save model

• checkpoint_epochs (int = None) – number of steps between two consecutive model
checkpoints

dingo.core.utils.trainutils.write_history(log_dir, epoch, train_loss, test_loss, learning_rates,
aux=None, filename='history.txt')

Writes losses and learning rate history to csv file.

Parameters

• log_dir (str) – directory containing the history file

• epoch (int) – epoch

• train_loss (float) – train_loss of epoch

• test_loss (float) – test_loss of epoch

• learning_rates (list) – list of learning rates in epoch

• aux (list = []) – list of auxiliary information to be logged

• filename (str = 'history.txt') – name of history file

108 Chapter 20. dingo

dingo-gw

Module contents

Submodules

dingo.core.dataset module

class dingo.core.dataset.DingoDataset(file_name=None, dictionary=None, data_keys=None)
Bases: object

This is a generic dataset class with save / load methods.

A common use case is to inherit multiply from DingoDataset and torch.utils.data.Dataset, in which case the
subclass picks up these I/O methods, and DingoDataset is acting as a Mixin class.

Alternatively, if the torch Dataset is not needed, then DingoDataset can be subclassed directly.

For constructing, provide either file_name, or dictionary containing data and settings entries, or neither.

Parameters

• file_name (str) – HDF5 file containing a dataset

• dictionary (dict) – Contains settings and data entries. The data keys should be the same
as save_keys

• data_keys (list) – Variables that should be saved / loaded. This allows for class to store
additional variables beyond those that are saved. Typically, this list would be provided by
any subclass.

dataset_type = 'dingo_dataset'

from_dictionary(dictionary: dict)

from_file(file_name)

to_dictionary()

to_file(file_name, mode='w')

dingo.core.dataset.recursive_hdf5_load(group, keys=None)

dingo.core.dataset.recursive_hdf5_save(group, d)

dingo.core.likelihood module

class dingo.core.likelihood.Likelihood

Bases: object

log_likelihood(theta)

log_likelihood_multi(theta: DataFrame, num_processes: int = 1)→ ndarray
Calculate the log likelihood at multiple points in parameter space. Works with multiprocessing.

This wraps the log_likelihood() method.

Parameters

• theta (pd.DataFrame) – Parameters values at which to evaluate likelihood.

• num_processes (int) – Number of processes to use.

20.1. dingo package 109

dingo-gw

Return type
np.array of log likelihoods

dingo.core.multiprocessing module

dingo.core.multiprocessing.apply_func_with_multiprocessing(func: callable, theta: DataFrame,
num_processes: int = 1)→ ndarray

Call func(theta.iloc[idx].to_dict()) with multiprocessing.

Parameters

• func (callable) –

• theta (pd.DataFrame) – Parameters with multiple rows, evaluate func for each row.

• num_processes (int) – Number of parallel processes to use.

Returns
result – Output array, where result[idx] = func(theta.iloc[idx].to_dict())

Return type
np.ndarray

dingo.core.result module

class dingo.core.result.Result(file_name=None, dictionary=None)
Bases: DingoDataset

A dataset class to hold a collection of samples, implementing I/O, importance sampling, and unconditional flow
training.

Attributes:

samples
[pd.Dataframe] Contains parameter samples, as well as (possibly) log_prob, log_likelihood, weights,
log_prior, delta_log_prob_target.

domain
[Domain] Should be implemented in a subclass.

prior
[PriorDict] Should be implemented in a subclass.

likelihood
[Likelihood] Should be implemented in a subclass.

context
[dict] Context data from which the samples were produced (e.g., strain data, ASDs).

metadata : dict event_metadata : dict log_evidence : float log_evidence_std : float (property) effec-
tive_sample_size, n_eff : float (property) sample_efficiency : float (property)

For constructing, provide either file_name, or dictionary containing data and settings entries, or neither.

Parameters

• file_name (str) – HDF5 file containing a dataset

• dictionary (dict) – Contains settings and data entries. The data keys should be the same
as save_keys

110 Chapter 20. dingo

dingo-gw

• data_keys (list) – Variables that should be saved / loaded. This allows for class to store
additional variables beyond those that are saved. Typically, this list would be provided by
any subclass.

property base_metadata

property constraint_parameter_keys

dataset_type = 'core_result'

property effective_sample_size

property fixed_parameter_keys

importance_sample(num_processes: int = 1, **likelihood_kwargs)
Calculate importance weights for samples.

Importance sampling starts with samples have been generated from a proposal distribution q(theta), in this
case a neural network model. Certain networks (i.e., non-GNPE) also provide the log probability of each
sample, which is required for importance sampling.

Given the proposal, we re-weight samples according to the (un-normalized) target distribution, which we
take to be the likelihood L(theta) times the prior pi(theta). This gives sample weights

w(theta) ~ pi(theta) L(theta) / q(theta),

where the overall normalization does not matter (and we take to have mean 1). Since q(theta) enters this
expression, importance sampling is only possible when we know the log probability of each sample.

As byproducts, this method also estimates the evidence and effective sample size of the importance sampled
points.

This method modifies the samples pd.DataFrame in-place, adding new columns for log_likelihood,
log_prior, and weights. It also stores the log_evidence as an attribute.

Parameters

• num_processes (int) – Number of parallel processes to use when calculating likelihoods.
(This is the most expensive task.)

• likelihood_kwargs (dict) – kwargs that are forwarded to the likelihood constructor.
E.g., options for marginalization.

property injection_parameters

property log_bayes_factor

property log_evidence_std

classmethod merge(parts)
Merge several Result instances into one. Check that they are compatible, in the sense of having the same
metadata. Finally, calculate a new log evidence for the combined result.

This is useful when recombining separate importance sampling jobs.

Parameters
parts (list[Result]) – List of sub-Results to be combined.

Return type
Combined Result.

property metadata

20.1. dingo package 111

dingo-gw

property n_eff

property num_samples

parameter_subset(parameters)
Return a new object of the same type, with only a subset of parameters. Drops all other columns in samples
DataFrame as well (e.g., log_prob, weights).

Parameters
parameters (list) – List of parameters to keep.

Return type
Result

plot_corner(parameters=None, filename='corner.pdf')
Generate a corner plot of the samples.

Parameters

• parameters (list[str]) – List of parameters to include. If None, include all parameters.
(Default: None)

• filename (str) – Where to save samples.

plot_log_probs(filename='log_probs.png')
Make a scatter plot of the target versus proposal log probabilities. For the target, subtract off the log evi-
dence.

plot_weights(filename='weights.png')
Make a scatter plot of samples weights vs log proposal.

print_summary()

Display the number of samples, and (if importance sampling is complete) the log evidence and number of
effective samples.

reset_event(event_dataset)
Set the Result context and event_metadata based on an EventDataset.

If these attributes already exist, perform a comparison to check for changes. Update relevant objects appro-
priately. Note that setting context and event_metadata attributes directly would not perform these additional
checks and updates.

Parameters
event_dataset (EventDataset) – New event to be used for importance sampling.

property sample_efficiency

sampling_importance_resampling(num_samples=None, random_state=None)
Generate unweighted posterior samples from weighted ones. New samples are sampled with probability
proportional to the sample weight. Resampling is done with replacement, until the desired number of
unweighted samples is obtained.

Parameters

• num_samples (int) – Number of samples to resample.

• random_state (int or None) – Sampling seed.

Returns
Unweighted samples

112 Chapter 20. dingo

dingo-gw

Return type
pd.Dataframe

property search_parameter_keys

split(num_parts)
Split the Result into a set of smaller results. The samples are evenly divided among the sub-results. Addi-
tional information (metadata, context, etc.) are copied into each.

This is useful for splitting expensive tasks such as importance sampling across multiple jobs.

Parameters
num_parts (int) – The number of parts to split the Result across.

Return type
list of sub-Results.

train_unconditional_flow(parameters, nde_settings: dict, train_dir: str | None = None, threshold_std:
float | None = inf)

Train an unconditional flow to represent the distribution of self.samples.

Parameters

• parameters (list) – List of parameters over which to train the flow. Can be a subset of
the existing parameters.

• nde_settings (dict) – Configuration settings for the neural density estimator.

• train_dir (Optional[str]) – Where to save the output of network training, e.g., logs,
checkpoints. If not provide, a temporary directory is used.

• threshold_std (Optional[float]) – Drop samples more than threshold_std standard
deviations away from the mean (in any parameter) before training the flow. This is meant
to remove outlier samples.

Return type
PosteriorModel

dingo.core.result.check_equal_dict_of_arrays(a, b)

dingo.core.result.freeze(d)

dingo.core.samplers module

class dingo.core.samplers.GNPESampler(model: PosteriorModel, init_sampler: Sampler, num_iterations:
int = 1)

Bases: Sampler

Base class for GNPE sampler. It wraps a PosteriorModel and a standard Sampler for initialization. The former
is used to generate initial samples for Gibbs sampling.

A GNPE network is conditioned on additional “proxy” context theta^, i.e.,

p(theta | theta^, d)

The theta^ depend on theta via a fixed kernel p(theta^ | theta). Combining these known distributions, this class
uses Gibbs sampling to draw samples from the joint distribution,

p(theta, theta^ | d)

20.1. dingo package 113

dingo-gw

The advantage of this approach is that we are allowed to perform any transformation of d that depends on theta^.
In particular, we can use this freedom to simplify the data, e.g., by aligning data to have merger times = 0 in each
detector. The merger times are unknown quantities that must be inferred jointly with all other parameters, and
GNPE provides a means to do this iteratively. See https://arxiv.org/abs/2111.13139 for additional details.

Gibbs sampling breaks access to the probability density, so this must be recovered through other means. One way
is to train an unconditional flow to represent p(theta^ | d) for fixed d based on the samples produced through the
GNPE Gibbs sampling. Starting from these, a single Gibbs iteration gives theta from the GNPE network, along
with the probability density in the joint space. This is implemented in GNPESampler provided the init_sampler
provides proxies directly and num_iterations = 1.

Attributes (beyond those of Sampler)

init_sampler
[Sampler] Used for providing initial samples for Gibbs sampling.

num_iterations
[int] Number of Gibbs iterations to perform.

iteration_tracker : IterationTracker not set up remove_init_outliers : float not set up

param model
type model

PosteriorModel

param init_sampler
Used for generating initial samples

type init_sampler
Sampler

param num_iterations
Number of GNPE iterations to be performed by sampler.

type num_iterations
int

property gnpe_proxy_parameters

property init_sampler

property num_iterations

The number of GNPE iterations to perform when sampling.

class dingo.core.samplers.Sampler(model: PosteriorModel)
Bases: object

Sampler class that wraps a PosteriorModel. Allows for conditional and unconditional models.

Draws samples from the model based on (optional) context data.

This is intended for use either as a standalone sampler, or as a sampler producing initial sample points for a
GNPE sampler.

run_sampler()

log_prob()

to_result()

114 Chapter 20. dingo

https://arxiv.org/abs/2111.13139

dingo-gw

to_hdf5()

model

Type
PosteriorModel

inference_parameters

Type
list

samples

Samples produced from the model by run_sampler().

Type
DataFrame

context

Type
dict

metadata

Type
dict

event_metadata

Type
dict

unconditional_model

Whether the model is unconditional, in which case it is not provided context information.

Type
bool

transform_pre, transform_post

Transforms to be applied to data and parameters during inference. These are typically implemented in a
subclass.

Type
Transform

Parameters
model (PosteriorModel) –

property context

Data on which to condition the sampler. For injections, there should be a ‘parameters’ key with truth values.

property event_metadata

Metadata for data analyzed. Can in principle influence any post-sampling parameter transformations (e.g.,
sky position correction), as well as the likelihood detector positions.

log_prob(samples: DataFrame)→ ndarray
Calculate the model log probability at specific sample points.

Parameters
samples (pd.DataFrame) – Sample points at which to calculate the log probability.

20.1. dingo package 115

dingo-gw

Return type
np.array of log probabilities.

run_sampler(num_samples: int, batch_size: int | None = None)
Generates samples and stores them in self.samples. Conditions the model on self.context if appropriate
(i.e., if the model is not unconditional).

If possible, it also calculates the log_prob and saves it as a column in self.samples. When using GNPE it
is not possible to obtain the log_prob due to the many Gibbs iterations. However, in the case of just one
iteration, and when starting from a sampler for the proxy, the GNPESampler does calculate the log_prob.

Allows for batched sampling, e.g., if limited by GPU memory. Actual sampling for each batch is performed
by _run_sampler(), which will differ for Sampler and GNPESampler.

Parameters

• num_samples (int) – Number of samples requested.

• batch_size (int, optional) – Batch size for sampler.

to_hdf5(label='result', outdir='.')

to_result()→ Result
Export samples, metadata, and context information to a Result instance, which can be used for saving or,
e.g., importance sampling, training an unconditional flow, etc.

Return type
Result

write_pesummary(filename)

dingo.core.transforms module

class dingo.core.transforms.GetItem(key)
Bases: object

class dingo.core.transforms.RenameKey(old, new)
Bases: object

Module contents

dingo.gw package

Subpackages

dingo.gw.conversion package

Submodules

dingo.gw.conversion.spin_conversion module

dingo.gw.conversion.spin_conversion.cartesian_spins(p, f_ref)
Transform PE spins to cartesian spins.

Parameters

116 Chapter 20. dingo

dingo-gw

• p (dict) – contains parameters, including PE spins

• f_ref (float) – reference frequency for definition of spins

Returns
result – parameters, including cartesian spins

Return type
dict

dingo.gw.conversion.spin_conversion.change_spin_conversion_phase(samples, f_ref , sc_phase_old,
sc_phase_new)

Change the phase used to convert cartesian spins to PE spins. The cartesian spins are independent of the spin
conversion phase. When converting from cartesian spins to PE spins, the phase value has an impact on theta_jn
and phi_jl.

The usual convention for the PE spins is to use the phase parameter for the conversion (cart. spins <–> PE spins),
but for dingo-IS with the synthetic phase extension we need to use another convention, where the PE spins are
defined with spin conversion phase 0. This function transforms between the different conventions.

Parameters

• samples (pd.Dataframe) – Parameters.

• f_ref (float) – Reference frequency for definition of spins.

• sc_phase_old (float or None) – Spin conversion phase used for input parameters. If
None, use the phase parameter.

• sc_phase_new (float or None) – Spin conversion phase used for output parameters. If
None, use the phase parameter.

Returns
parameters with changed spin conversion phase

Return type
p_new

dingo.gw.conversion.spin_conversion.component_masses(p)

dingo.gw.conversion.spin_conversion.pe_spins(p, f_ref)
Transform cartesian spins to PE spins.

Parameters

• p (dict) – contains parameters, including cartesian spins

• f_ref (float) – reference frequency for definition of spins

Returns
result – parameters, including PE spins

Return type
dict

20.1. dingo package 117

dingo-gw

Module contents

dingo.gw.data package

Submodules

dingo.gw.data.data_download module

dingo.gw.data.data_download.download_psd(det, time_start, time_psd, window, f_s)
Download strain data and generate a PSD based on these. Use num_segments of length time_segment, starting
at GPS time time_start.

Parameters

• det (str) – detector

• time_start (float) – start GPS time for PSD estimation

• time_psd (float = 1024) – time in seconds for strain used for PSD generation

• window (Union(np.ndarray, dict)) – Window used for PSD generation, needs to be
the same as used for Fourier transform of event strain data. Provided as dict, window is
generated by window = dingo.gw.gwutils.get_window(**window).

• f_s (float) – sampling rate of strain data

Returns
psd – array of psd

Return type
np.array

dingo.gw.data.data_download.download_raw_data(time_event, time_segment, time_psd, time_buffer,
detectors, window, f_s)

dingo.gw.data.data_preparation module

dingo.gw.data.data_preparation.data_to_domain(raw_data, settings_raw_data, domain, **kwargs)

Parameters

• raw_data –

• settings_raw_data –

• model_metadata –

Returns
data – dict with domain_data

Return type
dict

dingo.gw.data.data_preparation.get_event_data_and_domain(model_metadata, time_event, time_psd,
time_buffer, event_dataset=None)

118 Chapter 20. dingo

dingo-gw

dingo.gw.data.data_preparation.load_raw_data(time_event, settings, event_dataset=None)
Load raw event data.

• If event_dataset is provided and event data is saved in it, load and return the data

• Else, event data is downloaded. If event_dataset is provided, the event data is additionally saved to the file.

Parameters

• time_event (float) – gps time of the events

• settings (dict) – dict with the settings

• event_dataset (str) – name of the event dataset file

dingo.gw.data.data_preparation.parse_settings_for_raw_data(model_metadata, time_psd,
time_buffer)

dingo.gw.data.event_dataset module

class dingo.gw.data.event_dataset.EventDataset(file_name=None, dictionary=None)
Bases: DingoDataset

Dataset class for storing single event.

For constructing, provide either file_name, or dictionary containing data and settings entries, or neither.

Parameters

• file_name (str) – HDF5 file containing a dataset

• dictionary (dict) – Contains settings and data entries. The data keys should be the same
as save_keys

• data_keys (list) – Variables that should be saved / loaded. This allows for class to store
additional variables beyond those that are saved. Typically, this list would be provided by
any subclass.

dataset_type = 'event_dataset'

Module contents

dingo.gw.dataset package

Submodules

dingo.gw.dataset.generate_dataset module

dingo.gw.dataset.generate_dataset.generate_dataset(settings: Dict, num_processes: int)→
WaveformDataset

Generate a waveform dataset.

Parameters

• settings (dict) – Dictionary of settings to configure the dataset

• num_processes (int) –

20.1. dingo package 119

dingo-gw

Return type
A WaveformDataset based on the settings.

dingo.gw.dataset.generate_dataset.generate_parameters_and_polarizations(waveform_generator:
WaveformGenerator,
prior: BBHPriorDict,
num_samples: int,
num_processes: int)
→ Tuple[DataFrame,
Dict[str, ndarray]]

Generate a dataset of waveforms based on parameters drawn from the prior.

Parameters

• waveform_generator (WaveformGenerator) –

• prior (Prior) –

• num_samples (int) –

• num_processes (int) –

Returns

• pandas DataFrame of parameters

• dictionary of numpy arrays corresponding to waveform polarizations

dingo.gw.dataset.generate_dataset.main()

dingo.gw.dataset.generate_dataset.parse_args()

dingo.gw.dataset.generate_dataset.train_svd_basis(dataset: WaveformDataset, size: int, n_train: int)
Train (and optionally validate) an SVD basis.

Parameters

• dataset (WaveformDataset) – Contains waveforms to be used for building SVD.

• size (int) – Number of elements to keep for the SVD basis.

• n_train (int) – Number of training waveforms to use. Remaining are used for validation.
Note that the actual number of training waveforms is n_train * len(polarizations), since there
is one waveform used for each polarization.

Returns
Since EOB waveforms can fail to generate, provide also the number used in training and valida-
tion.

Return type
SVDBasis, n_train, n_test

120 Chapter 20. dingo

dingo-gw

dingo.gw.dataset.generate_dataset_dag module

dingo.gw.dataset.generate_dataset_dag.configure_runs(settings, num_jobs, temp_dir)
Prepare and save settings .yaml files for generating subsets of the dataset. Generally this will produce two .yaml
files, one for generating the main dataset, one for the SVD training.

Parameters

• settings (dict) – Settings for full dataset configuration.

• num_jobs (int) – Number of jobs over which to split the run.

• temp_dir (str) – Name of (temporary) directory in which to place temporary output files.

dingo.gw.dataset.generate_dataset_dag.create_args_string(args_dict: Dict)
Generate argument string from dictionary of argument names and arguments.

dingo.gw.dataset.generate_dataset_dag.create_dag(args, settings)
Create a Condor DAG from command line arguments to carry out the five steps in the workflow.

dingo.gw.dataset.generate_dataset_dag.main()

dingo.gw.dataset.generate_dataset_dag.modulus_check(a: int, b: int, a_label: str, b_label: str)
Raise error if a % b != 0.

dingo.gw.dataset.generate_dataset_dag.parse_args()

dingo.gw.dataset.utils module

dingo.gw.dataset.utils.build_svd_cli()

Command-line function to build an SVD based on an uncompressed dataset file.

dingo.gw.dataset.utils.merge_datasets(dataset_list: List[WaveformDataset])→ WaveformDataset
Merge a collection of datasets into one.

Parameters
dataset_list (list[WaveformDataset]) – A list of WaveformDatasets. Each item should
be a dictionary containing parameters and polarizations.

Return type
WaveformDataset containing the merged data.

dingo.gw.dataset.utils.merge_datasets_cli()

Command-line function to combine a collection of datasets into one. Used for parallelized waveform generation.

dingo.gw.dataset.waveform_dataset module

class dingo.gw.dataset.waveform_dataset.WaveformDataset(file_name=None, dictionary=None,
transform=None, precision=None,
domain_update=None,
svd_size_update=None)

Bases: DingoDataset, Dataset

This class stores a dataset of waveforms (polarizations) and corresponding parameters.

It can load the dataset either from an HDF5 file or suitable dictionary.

20.1. dingo package 121

dingo-gw

Once a waveform data set is in memory, the waveform data are consumed through a __getitem__() call, optionally
applying a chain of transformations, which are classes that implement a __call__() method.

For constructing, provide either file_name, or dictionary containing data and settings entries, or neither.

Parameters

• file_name (str) – HDF5 file containing a dataset

• dictionary (dict) – Contains settings and data entries. The dictionary keys should be
‘settings’, ‘parameters’, and ‘polarizations’.

• transform (Transform) – Transform to be applied to dataset samples when accessed
through __getitem__

• precision (str ('single', 'double')) – If provided, changes precision of loaded
dataset.

• domain_update (dict) – If provided, update domain from existing domain using new set-
tings.

• svd_size_update (int) – If provided, reduces the SVD size when decompressing (for
speed).

dataset_type = 'waveform_dataset'

initialize_decompression(svd_size_update: int | None = None)
Sets up decompression transforms. These are applied to the raw dataset before self.transform. E.g., SVD
decompression.

Parameters
svd_size_update (int) – If provided, reduces the SVD size when decompressing (for
speed).

load_supplemental(domain_update=None, svd_size_update=None)
Method called immediately after loading a dataset.

Creates (and possibly updates) domain, updates dtypes, and initializes any decompression transform. Also
zeros data below f_min, and truncates above f_max.

Parameters

• domain_update (dict) – If provided, update domain from existing domain using new
settings.

• svd_size_update (int) – If provided, reduces the SVD size when decompressing (for
speed).

parameter_mean_std()

update_domain(domain_update: dict | None = None)
Update the domain based on new configuration.

The waveform dataset provides waveform polarizations in a particular domain. In Frequency domain, this
is [0, domain._f_max]. Furthermore, data is set to 0 below domain._f_min. In practice one may want to
train a network based on slightly different domain settings, which corresponds to truncating the likelihood
integral.

This method provides functionality for that. It truncates and/or zeroes the dataset to the range specified by
the domain, by calling domain.update_data.

122 Chapter 20. dingo

dingo-gw

Parameters
domain_update (dict) – Settings dictionary. Must contain a subset of the keys contained
in domain_dict.

Module contents

dingo.gw.importance_sampling package

Submodules

dingo.gw.importance_sampling.diagnostics module

dingo.gw.importance_sampling.diagnostics.plot_diagnostics(result: Result, outdir, num_processes=1,
num_slice_plots=0,
n_grid_slice1d=200,
n_grid_slice2d=100,
params_slice2d=None)

dingo.gw.importance_sampling.diagnostics.plot_posterior_slice(sampler, theta, theta_range,
outname=None, num_processes=1,
n_grid=200, parameters=None,
normalize_conditionals=False)

dingo.gw.importance_sampling.diagnostics.plot_posterior_slice2d(sampler, theta, theta_range,
n_grid=100, num_processes=1,
outname=None)

dingo.gw.importance_sampling.importance_weights module

Step 1: Train unconditional nde Step 2: Set up likelihood and prior

dingo.gw.importance_sampling.importance_weights.main()

dingo.gw.importance_sampling.importance_weights.parse_args()

Module contents

Implements sampling-importance-resampling (sir) for GW posteriors.

dingo.gw.inference package

Submodules

dingo.gw.inference.gw_samplers module

20.1. dingo package 123

dingo-gw

class dingo.gw.inference.gw_samplers.GWSampler(**kwargs)
Bases: GWSamplerMixin, Sampler

Sampler for gravitational-wave inference using neural posterior estimation. Augments the base class by defining
transform_pre and transform_post to prepare data for the inference network.

transform_pre :

• Whitens strain.

• Repackages strain data and the inverse ASDs (suitably scaled) into a torch tensor.

transform_post :

• Extract the desired inference parameters from the network output (array-like), de-standardize them,
and repackage as a dict.

Also mixes in GW functionality for building the domain and correcting the reference time.

Allows for conditional and unconditional models, and draws samples from the model based on (optional) context
data.

This is intended for use either as a standalone sampler, or as a sampler producing initial sample points for a
GNPE sampler.

Parameters
kwargs – Keyword arguments that are forwarded to the superclass.

class dingo.gw.inference.gw_samplers.GWSamplerGNPE(**kwargs)
Bases: GWSamplerMixin, GNPESampler

Gravitational-wave GNPE sampler. It wraps a PosteriorModel and a standard Sampler for initialization. The
former is used to generate initial samples for Gibbs sampling.

Compared to the base class, this class implements the required transforms for preparing data and parameters for
the network. This includes GNPE transforms, data processing transforms, and standardization/de-standardization
of parameters.

A GNPE network is conditioned on additional “proxy” context theta^, i.e.,

p(theta | theta^, d)

The theta^ depend on theta via a fixed kernel p(theta^ | theta). Combining these known distributions, this class
uses Gibbs sampling to draw samples from the joint distribution,

p(theta, theta^ | d)

The advantage of this approach is that we are allowed to perform any transformation of d that depends on theta^.
In particular, we can use this freedom to simplify the data, e.g., by aligning data to have merger times = 0 in each
detector. The merger times are unknown quantities that must be inferred jointly with all other parameters, and
GNPE provides a means to do this iteratively. See https://arxiv.org/abs/2111.13139 for additional details.

Gibbs sampling breaks access to the probability density, so this must be recovered through other means. One way
is to train an unconditional flow to represent p(theta^ | d) for fixed d based on the samples produced through the
GNPE Gibbs sampling. Starting from these, a single Gibbs iteration gives theta from the GNPE network, along
with the probability density in the joint space. This is implemented in GNPESampler provided the init_sampler
provides proxies directly and num_iterations = 1.

124 Chapter 20. dingo

https://arxiv.org/abs/2111.13139

dingo-gw

Attributes (beyond those of Sampler)

init_sampler
[Sampler] Used for providing initial samples for Gibbs sampling.

num_iterations
[int] Number of Gibbs iterations to perform.

iteration_tracker
[IterationTracker] not set up

remove_init_outliers
[float] not set up

param kwargs
Keyword arguments that are forwarded to the superclass.

class dingo.gw.inference.gw_samplers.GWSamplerMixin(**kwargs)
Bases: object

Mixin class designed to add gravitational wave functionality to Sampler classes:

• builder for data domain

• correction for fixed detector locations during training (t_ref)

Parameters
kwargs – Keyword arguments that are forwarded to the superclass.

dingo.gw.inference.inference_pipeline module

dingo.gw.inference.inference_pipeline.analyze_event()

dingo.gw.inference.inference_pipeline.get_event_data(event, args, model, ref=None)

dingo.gw.inference.inference_pipeline.parse_args()

dingo.gw.inference.inference_pipeline.prepare_log_prob(sampler, num_samples: int, nde_settings:
dict, batch_size: int | None = None,
threshold_std: float | None = inf ,
remove_init_outliers: float | None = 0.0,
low_latency_label: str | None = None,
outdir: str | None = None)

Prepare gnpe sampling with log_prob. This is required, since in its vanilla form gnpe does not provide the density
for its samples.

Specifically, we train an unconditional neural density estimator (nde) for the gnpe proxies. This requires running
the gnpe sampler till convergence, and extracting the gnpe proxies after the final gnpe iteration. The nde is trained
to match the distribution over gnpe proxies, which provides a way of rapidly sampling (converged!) gnpe proxies
and evaluating the log_prob.

After this preparation step, self.run_sampler can leverage self.gnpe_proxy_sampler (which is based on the afore-
mentioned trained nde) to sample gnpe proxies, such that one gnpe iteration is sufficient. The log_prob of the
samples in the joint space (inference parameters + gnpe proxies) is then simply given by the sum of the corre-
sponding log_probs (from self.model and self.gnpe_proxy_sampler.model).

Parameters

20.1. dingo package 125

dingo-gw

• num_samples (int) – number of samples for training of nde

• batch_size (int = None) – batch size for sampler

• threshold_std (float = np.inf) – gnpe proxies deviating by more then threshold_std
standard deviations from the proxy mean (along any axis) are discarded.

• low_latency_label (str = None) – File label for low latency samples (= samples used
for training nde). If None, these samples are not saved.

• outdir (str = None) – Directory in which low latency samples are saved. Needs to be set
if low_latency_label is not None.

dingo.gw.inference.visualization module

dingo.gw.inference.visualization.generate_cornerplot(*sample_sets, filename=None)

dingo.gw.inference.visualization.load_ref_samples(ref_samples_file, drop_geocent_time=True)

Module contents

dingo.gw.noise package

Subpackages

dingo.gw.noise.synthetic package

Submodules

dingo.gw.noise.synthetic.asd_parameterization module

dingo.gw.noise.synthetic.asd_parameterization.curve_fit(data, std, delta_f=None)
Fit a Lorentzian to the PSD.

Parameters

• data (dict) – Dictionary containing the PSD, broadband noise, and frequency grid.

• std (float) – Standard deviation of the Gaussian noise.

• delta_f (float) – Truncation parameter for Lorentzians. Set to None if non-positive value
is passed.

dingo.gw.noise.synthetic.asd_parameterization.fit_broadband_noise(domain, psd,
num_spline_positions, sigma,
f_min=20)

Fit a spline to the broadband noise of a PSD.

Parameters

• domain (Domain) – Domain object containing the frequency grid.

• psd (array_like) – PSD to be parameterized.

• num_spline_positions (int) – Number of spline positions.

• sigma (float) – Standard deviation of the Gaussian noise used for the spline fit.

126 Chapter 20. dingo

dingo-gw

• f_min (float, optional) – position of the first node for the spline fi

dingo.gw.noise.synthetic.asd_parameterization.fit_spectral(frequencies, psd, broadband_noise,
num_spectral_segments, sigma,
delta_f)

Fit Lorentzians to the spectral features of a PSD.

Parameters

• frequencies (array_like) – Frequency grid.

• psd (array_like) – PSD to be parameterized.

• broadband_noise (array_like) – Broadband noise of the PSD.

• num_spectral_segments (int) – Number of spectral segments.

• sigma (float) – Standard deviation of the Gaussian noise used for the spline fit.

• delta_f (float) – Truncation parameter for Lorentzians. Set to None if non-positive value
is passed.

dingo.gw.noise.synthetic.asd_parameterization.parameterize_asd_dataset(real_dataset, parame-
terization_settings,
num_processes,
verbose)

Parameterize a dataset of ASDs using a spline fit to the broadband noise and Lorentzians for the spectral features.

Parameters

• real_dataset (ASDDataset) – Dataset containing the ASDs to be parameterized.

• parameterization_settings (dict) – Dictionary containing the settings for the param-
eterization.

• num_processes (int) – Number of processes to use for parallelization.

• verbose (bool) – If True, print progress bars.

dingo.gw.noise.synthetic.asd_parameterization.parameterize_asds_parallel(asds, domain,
parameteriza-
tion_settings,
pool=None,
verbose=False)

Helper function to be called for parallel ASD parameterization.

Parameters

• asds (array_like) – Array containing the ASDs to be parameterized.

• domain (Domain) – Domain object containing the frequency grid.

• parameterization_settings (dict) – Dictionary containing the settings for the param-
eterization.

• pool (Pool, optional) – Pool object for parallelization. If None, the function is not par-
allelized.

• verbose (bool) – If True, print progress bars.

dingo.gw.noise.synthetic.asd_parameterization.parameterize_single_psd(real_psd, domain, pa-
rameterization_settings)

Parameterize a single ASD using a spline fit to the broadband noise and Lorentzians for the spectral features.

20.1. dingo package 127

dingo-gw

Parameters

• real_psd (array_like) – PSD to be parameterized.

• domain (Domain) – Domain object containing the frequency grid.

• parameterization_settings (dict) – Dictionary containing the settings for the param-
eterization.

dingo.gw.noise.synthetic.asd_sampling module

class dingo.gw.noise.synthetic.asd_sampling.KDE(parameter_dict, sampling_settings)
Bases: object

Kernel Density Estimation (KDE) class for sampling ASDs.

Parameters

• parameter_dict (dict) – Dictionary containing the parameters of the ASDs used for fit-
ting the synthetic distribution.

• sampling_settings (dict) – Dictionary containing the settings for the sampling.

fit(weights=None)
Fit the KDEs to the parameters saved in ‘self.parameter_dict’. :param weights: Weights for the KDEs. If
None, all weights are set to 1. :type weights: array_like, optional

sample(num_samples, rescaling_ys=None)

Sample a synthetic ASD dataset from the fitted KDEs

Parameters: num_samples (int): Number of samples to draw. rescaling_ys (dict): Optional dictionary of
spline y-values used for rescaling the base noise.

dingo.gw.noise.synthetic.asd_sampling.get_rescaling_params(filenames, parameterization_settings)
Get the parameters of the ASDs that are used for rescaling. :param filenames: Dictionary containing the paths
to the ASD files. :type filenames: dict :param parameterization_settings: Dictionary containing the settings for
the parameterization. :type parameterization_settings: dict

dingo.gw.noise.synthetic.generate_dataset module

dingo.gw.noise.synthetic.generate_dataset.generate_dataset(real_dataset, settings: Dict,
num_samples, num_processes: int,
verbose: bool)

Generate a synthetic ASD dataset from an existing dataset of real ASDs.

Parameters

• real_dataset (ASDDataset) – Existing dataset of real ASDs.

• settings (dict) – Dictionary containing the settings for the parameterization and sam-
pling.

• num_processes (int) – Number of processes to use in pool for parallel parameterization.

• verbose (bool) – Whether to print progress information.

128 Chapter 20. dingo

dingo-gw

dingo.gw.noise.synthetic.generate_dataset.main()

dingo.gw.noise.synthetic.generate_dataset.parse_args()

dingo.gw.noise.synthetic.utils module

dingo.gw.noise.synthetic.utils.get_index_for_elem(arr, elem)

dingo.gw.noise.synthetic.utils.lorentzian_eval(x, f0, A, Q, delta_f=None)
Evaluates a Lorentzian function at the given frequencies. :param x: Frequencies at which the Lorentzian is
evaluated. :type x: array_like :param f0: Center frequency of the Lorentzian. :type f0: float :param A: Amplitude
of the Lorentzian. :type A: float :param Q: Parameter determining the width of the Lorentzian :type Q: float
:param delta_f: If given, the Lorentzian is truncated :type delta_f: float, optional

Return type
array_like

dingo.gw.noise.synthetic.utils.reconstruct_psds_from_parameters(parameters_dict, domain,
parameterization_settings)

Reconstructs the PSDs from the parameters. :param parameters_dict: Dictionary containing the parameters of
the PSDs. :type parameters_dict: dict :param domain: Domain object containing the frequencies at which the
PSDs are evaluated. :type domain: dingo.gw.noise.domain.Domain :param parameterization_settings: Dictio-
nary containing the settings for the parameterization. :type parameterization_settings: dict

Return type
array_like

Module contents

Submodules

dingo.gw.noise.asd_dataset module

class dingo.gw.noise.asd_dataset.ASDDataset(file_name=None, dictionary=None, ifos=None,
precision=None, domain_update=None)

Bases: DingoDataset

Dataset of amplitude spectral densities (ASDs). The ASDs are typically used for whitening strain data, and
additionally passed as context to the neural density estimator.

Parameters

• file_name (str) – HDF5 file containing a dataset

• dictionary (dict) – Contains settings and data entries. The dictionary keys should be
‘settings’, ‘asds’, and ‘gps_times’.

• ifos (List[str]) – List of detectors used for dataset, e.g. [‘H1’, ‘L1’]. If not set, all
available ones in the dataset are used.

• precision (str ('single', 'double')) – If provided, changes precision of loaded
dataset.

• domain_update (dict) – If provided, update domain from existing domain using new set-
tings.

20.1. dingo package 129

dingo-gw

dataset_type = 'asd_dataset'

property gps_info

Min/Max GPS time for each detector.

property length_info

The number of asd samples per detector.

sample_random_asds()

Sample a random asd for each detector. :rtype: Dict with a random asd from the dataset for each detector.

update_domain(domain_update)
Update the domain based on new configuration. Also adjust data arrays to match the new domain.

The ASD dataset provides ASDs in a particular domain. In Frequency domain, this is [0, domain._f_max].
In practice one may want to train a network based on slightly different domain settings, which corresponds
to truncating the likelihood integral.

This method provides functionality for that. It truncates the data below a new f_max, and sets the ASD
below f_min to a large but finite value.

Parameters
domain_update (dict) – Settings dictionary. Must contain a subset of the keys contained
in domain_dict.

dingo.gw.noise.asd_estimation module

dingo.gw.noise.asd_estimation.download_and_estimate_cli()

Command-line function to download strain data and estimate PSDs based on the data. Used for parallelized ASD
dataset generation.

dingo.gw.noise.asd_estimation.download_and_estimate_psds(data_dir: str, settings: dict,
time_segments: dict, verbose=False)

Downloads strain data for the specified time segments and estimates PSDs based on these

Parameters

• data_dir (str) – Path to the directory where the PSD dataset will be stored

• settings (dict) – Settings that determine the segments

• time_segments (dict) – specifying the time segments used for downloading the data

• verbose (bool) – optional parameter determining if progress should be printed

Return type
A dictionary containing the paths to the dataset files

dingo.gw.noise.generate_dataset module

dingo.gw.noise.generate_dataset.generate_dataset()

Creates and saves an ASD dataset

dingo.gw.noise.generate_dataset.parse_args()

130 Chapter 20. dingo

dingo-gw

dingo.gw.noise.generate_dataset_dag module

dingo.gw.noise.generate_dataset_dag.create_args_string(args_dict: Dict)
Generate argument string from dictionary of argument names and arguments.

dingo.gw.noise.generate_dataset_dag.create_dag(data_dir, settings_file, time_segments, out_name)
Create a Condor DAG to (a) download, estimate, individual PSDs and (b) merge them into one dataset

Parameters

• data_dir (str) – Path to the directory where the PSD dataset will be stored

• settings_file (str) – Settings : Path to settings file relevant for PSD generation

• time_segments (dict) – contains all time segments used for estimating PSDs

• out_name (str) – path where the resulting ASD dataset should be stored

Return type
Condor DAG

dingo.gw.noise.generate_dataset_dag.split_time_segments(time_segments, condor_dir, num_jobs)
Split up all time segments used for estimating PSDs into num_jobs-many segments and save them into a condor
directory

Parameters

• time_segments (dict) – contains all time segments used for estimating PSDs

• condor_dir (str) – path to a directory where condr-related files are stored

• num_jobs (int) – number of jobs that should be used per detector to parallelize the PSD
estimation

Return type
List of paths where the files including the subsets of all time segments are stored

dingo.gw.noise.utils module

dingo.gw.noise.utils.CATALOGS = ['GWTC-1-confident', 'GWTC-2.1-confident',
'GWTC-3-confident']

Contains links for PSD segment lists with quality label BURST_CAT2 from the Gravitational Wave Open Science
Center. Some events are split up into multiple chunks such that there are multiple URLs for one observing run

dingo.gw.noise.utils.get_event_gps_times()

dingo.gw.noise.utils.get_time_segments(settings)
Creates a dictionary storing time segments used for estimating PSDs :param settings: Settings that determine the
segments :type settings: dict

Return type
Dictionary containing the time segments for each detector

dingo.gw.noise.utils.merge_datasets(asd_dataset_list)
Merges a list of asd datasets into ont :param asd_dataset_list: :type asd_dataset_list: List of ASDDatasets to be
merged

Return type
A single combined ASDDataset object

20.1. dingo package 131

dingo-gw

dingo.gw.noise.utils.merge_datasets_cli()

Command-line function to combine a collection of datasets into one. Used for parallelized ASD dataset genera-
tion.

dingo.gw.noise.utils.psd_data_path(data_dir, run, detector)
Return the directory where the PSD data is to be stored :param data_dir: Path to the directory where the PSD
dataset will be stored :type data_dir: str :param run: Observing run that is used for the PSD dataset generation
:type run: str :param detector: Detector that is used for the PSD dataset generation :type detector: str

Return type
the path where the data is stored

Module contents

dingo.gw.training package

Submodules

dingo.gw.training.train_builders module

dingo.gw.training.train_builders.build_dataset(data_settings)
Build a dataset based on a settings dictionary. This should contain the path of a saved waveform dataset.

This function also truncates the dataset as necessary.

Parameters
data_settings (dict) –

Return type
WaveformDataset

dingo.gw.training.train_builders.build_svd_for_embedding_network(wfd: WaveformDataset,
data_settings: dict,
asd_dataset_path: str, size: int,
num_training_samples: int,
num_validation_samples: int,
num_workers: int = 0,
batch_size: int = 1000,
out_dir=None)

Construct SVD matrices V based on clean waveforms in each interferometer. These will be used to seed the
weights of the initial projection part of the embedding network.

It first generates a number of training waveforms, and then produces the SVD.

Parameters

• wfd (WaveformDataset) –

• data_settings (dict) –

• asd_dataset_path (str) – Training waveforms will be whitened with respect to these
ASDs.

• size (int) – Number of basis elements to include in the SVD projection.

• num_training_samples (int) –

• num_validation_samples (int) –

132 Chapter 20. dingo

dingo-gw

• num_workers (int) –

• batch_size (int) –

• out_dir (str) – SVD performance diagnostics are saved here.

Returns
The V matrices for each interferometer. They are ordered as in data_settings[‘detectors’].

Return type
list of numpy arrays

dingo.gw.training.train_builders.set_train_transforms(wfd, data_settings, asd_dataset_path,
omit_transforms=None)

Set the transform attribute of a waveform dataset based on a settings dictionary. The transform takes waveform
polarizations, samples random extrinsic parameters, projects to detectors, adds noise, and formats the data for
input to the neural network. It also implements optional GNPE transformations.

Note that the WaveformDataset is modified in-place, so this function returns nothing.

Parameters

• wfd (WaveformDataset) –

• data_settings (dict) –

• asd_dataset_path (str) – Path corresponding to the ASD dataset used to generate noise.

• omit_transforms – List of sub-transforms to omit from the full composition.

dingo.gw.training.train_pipeline module

dingo.gw.training.train_pipeline.initialize_stage(pm, wfd, stage, num_workers, resume=False)

Initializes training based on PosteriorModel metadata and current stage:

• Builds transforms (based on noise settings for current stage);

• Builds DataLoaders;

• At the beginning of a stage (i.e., if not resuming mid-stage), initializes

a new optimizer and scheduler; * Freezes / unfreezes SVD layer of embedding network

Parameters

• pm (PosteriorModel) –

• wfd (WaveformDataset) –

• stage (dict) – Settings specific to current stage of training

• num_workers (int) –

• resume (bool) – Whether training is resuming mid-stage. This controls whether the opti-
mizer and scheduler should be re-initialized based on contents of stage dict.

Return type
(train_loader, test_loader)

dingo.gw.training.train_pipeline.parse_args()

20.1. dingo package 133

dingo-gw

dingo.gw.training.train_pipeline.prepare_training_new(train_settings: dict, train_dir: str,
local_settings: dict)

Based on a settings dictionary, initialize a WaveformDataset and PosteriorModel.

For model type ‘nsf+embedding’ (the only acceptable type at this point) this also initializes the embedding
network projection stage with SVD V matrices based on clean detector waveforms.

Parameters

• train_settings (dict) – Settings which ultimately come from train_settings.yaml file.

• train_dir (str) – This is only used to save diagnostics from the SVD.

• local_settings (dict) – Local settings (e.g., num_workers, device)

Return type
(WaveformDataset, PosteriorModel)

dingo.gw.training.train_pipeline.prepare_training_resume(checkpoint_name, local_settings,
train_dir)

Loads a PosteriorModel from a checkpoint, as well as the corresponding WaveformDataset, in order to continue
training. It initializes the saved optimizer and scheduler from the checkpoint.

Parameters

• checkpoint_name (str) – File name containing the checkpoint (.pt format).

• device (str) – ‘cuda’ or ‘cpu’

Return type
(PosteriorModel, WaveformDataset)

dingo.gw.training.train_pipeline.train_local()

dingo.gw.training.train_pipeline.train_stages(pm, wfd, train_dir, local_settings)
Train the network, iterating through the sequence of stages. Stages can change certain settings such as the noise
characteristics, optimizer, and scheduler settings.

Parameters

• pm (PosteriorModel) –

• wfd (WaveformDataset) –

• train_dir (str) – Directory for saving checkpoints and train history.

• local_settings (dict) –

Returns
True if all stages are complete False otherwise

Return type
bool

134 Chapter 20. dingo

dingo-gw

dingo.gw.training.train_pipeline_condor module

dingo.gw.training.train_pipeline_condor.copy_logfiles(log_dir, epoch, name='info', suffixes=('.err',
'.log', '.out'))

dingo.gw.training.train_pipeline_condor.copyfile(src, dst)

dingo.gw.training.train_pipeline_condor.create_submission_file(train_dir, condor_settings,
filename='submission_file.sub')

TODO: documentation :param train_dir: :param filename: :return:

dingo.gw.training.train_pipeline_condor.train_condor()

dingo.gw.training.utils module

dingo.gw.training.utils.append_stage()

Module contents

dingo.gw.transforms package

Submodules

dingo.gw.transforms.detector_transforms module

class dingo.gw.transforms.detector_transforms.ApplyCalibrationUncertainty(ifo_list,
data_domain, cali-
bration_envelope,
num_calibration_curves,
num_calibration_nodes)

Bases: object

Expand out a waveform using several detector calibration draws. These multiple draws are intended to be used
for marginalizing over calibration uncertainty.

Detector calibration uncertainty is modeled as described in https://dcc.ligo.org/LIGO-T1400682/public

Gravitational wave data 𝑑 is assumed to be of the form

𝑑(𝑓) = ℎ𝑜𝑏𝑠(𝑓) + 𝑛(𝑓),

whereℎ𝑜𝑏𝑠 is the observed waveform and𝑛 is the noise. Since the detector is not perfectly calibrated, the observed
waveform is not identical to the true waveform ℎ(𝑓). Rather, it is assumed to have corrections of the form

ℎ𝑜𝑏𝑠(𝑓) = ℎ(𝑓) * (1 + 𝛿𝐴(𝑓)) * exp(𝑖𝛿𝜑(𝑓)),

where 𝛿𝐴(𝑓) and 𝛿𝜑(𝑓) are frequency-dependent amplitude and phase errors. Under the calibration model, these
are parametrized with cubic splines, defined in terms of calibration parameters 𝐴𝑖 and 𝜑𝑖, defined at log-spaced
frequency nodes,

20.1. dingo package 135

https://dcc.ligo.org/LIGO-T1400682/public

dingo-gw

𝛿𝐴(𝑓) = spline(𝑓 ; 𝑓𝑖, 𝛿𝐴𝑖),

𝛿𝜑(𝑓) = spline(𝑓 ; 𝑓𝑖, 𝛿𝜑𝑖).

The calibration parameters are not known precisely, rather they are assumed to be normally distributed, with
mean 0 and standard deviation determined by the “calibration envelope”, which varies from event to event.

For each detector waveform, this transform draws a collection of 𝑁 calibration curves {(𝛿𝐴𝑛(𝑓), 𝛿𝜑𝑛(𝑓))}𝑁𝑛=1

according to a calibration envelope, and applies them to generate 𝑁 observed waveforms {ℎ𝑛
𝑜𝑏𝑠(𝑓)}. This is in-

tended to be used for marginalizing over the calibration uncertainty when evaluating the likelihood for importance
sampling.

Parameters

• ifo_list (InterferometerList) – List of Interferometers present in the analysis.

• data_domain (Domain) – Domain on which data is defined.

• calibration_envelope (dict) – Dictionary of the form {"H1": filepath, "L1":
filepath}, where the filepaths are strings pointing to “.txt” files containing calibration
envelopes. The calibration envelope depends on the event analyzed, and therefore remains
fixed for all applications of the transform. The calibration envelope is used to define the
variances (𝜎𝛿𝐴𝑖

, 𝜎𝛿𝜑𝑖
) of the calibration paramters.

• num_calibration_curves (int) – Number of calibration curves 𝑁 to produce and apply
to the waveform. Ultimately, this will translate to the number of samples in the Monte Carlo
estimate of the marginalized likelihood integral.

• num_calibration_nodes (int) – Number of log-spaced frequency nodes 𝑓𝑖 to use in
defining the spline.

class dingo.gw.transforms.detector_transforms.GetDetectorTimes(ifo_list, ref_time)
Bases: object

Compute the time shifts in the individual detectors based on the sky position (ra, dec), the geocent_time and the
ref_time.

class dingo.gw.transforms.detector_transforms.ProjectOntoDetectors(ifo_list, domain, ref_time)
Bases: object

Project the GW polarizations onto the detectors in ifo_list. This does not sample any new parameters, but relies
on the parameters provided in sample[‘extrinsic_parameters’]. Specifically, this transform applies the following
operations:

(1) Rescale polarizations to account for sampled luminosity distance

(2) Project polarizations onto the antenna patterns using the ref_time and the extrinsic parameters (ra, dec, psi)

(3) Time shift the strains in the individual detectors according to the times <ifo.name>_time provided in the
extrinsic parameters.

class dingo.gw.transforms.detector_transforms.TimeShiftStrain(ifo_list, domain)
Bases: object

Time shift the strains in the individual detectors according to the times <ifo.name>_time provided in the extrinsic
parameters.

dingo.gw.transforms.detector_transforms.time_delay_from_geocenter(ifo: Interferometer, ra: float |
ndarray | Tensor, dec: float |
ndarray | Tensor, time: float)

136 Chapter 20. dingo

dingo-gw

Calculate time delay between ifo and geocenter. Identical to method ifo.time_delay_from_geocenter(ra, dec,
time), but the present implementation allows for batched computation, i.e., it also accepts arrays and tensors for
ra and dec.

Implementation analogous to bilby-cython implementation https://git.ligo.org/colm.talbot/bilby-cython/-/blob/
main/bilby_cython/geometry.pyx, which is in turn based on XLALArrivaTimeDiff in TimeDelay.c.

Parameters

• ifo (bilby.gw.detector.interferometer.Interferometer) – bilby interferometer
object.

• ra (Union[float, np.array, torch.Tensor]) – Right ascension of the source in ra-
dians. Either float, or float array/tensor.

• dec (Union[float, np.array, torch.Tensor]) – Declination of the source in radians.
Either float, or float array/tensor.

• time (float) – GPS time in the geocentric frame.

Returns
float

Return type
Time delay between the two detectors in the geocentric frame

dingo.gw.transforms.general_transforms module

class dingo.gw.transforms.general_transforms.UnpackDict(selected_keys)
Bases: object

Unpacks the dictionary to prepare it for final output of the dataloader. Only returns elements specified in se-
lected_keys.

dingo.gw.transforms.gnpe_transforms module

class dingo.gw.transforms.gnpe_transforms.GNPEBase(kernel_dict, operators)
Bases: ABC

A base class for Group Equivariant Neural Posterior Estimation [1].

This implements GNPE for approximate equivariances. For exact equivariances, additional processing should
be implemented within a subclass.

[1]: https://arxiv.org/abs/2111.13139

inverse(a, k)

multiply(a, b, k)

perturb(g, k)
Generate proxy variables based on initial parameter values.

Parameters

• g (Union[np.float64, float, torch.Tensor]) – Initial parameter values

• k (str) – Parameter name. This is used to identify the group binary operator.

20.1. dingo package 137

https://git.ligo.org/colm.talbot/bilby-cython/-/blob/main/bilby_cython/geometry.pyx
https://git.ligo.org/colm.talbot/bilby-cython/-/blob/main/bilby_cython/geometry.pyx
https://arxiv.org/abs/2111.13139

dingo-gw

Return type
Proxy variables in the same format as g.

sample_proxies(input_parameters)
Given input parameters, perturbs based on the kernel to produce “proxy” (“hatted”) parameters, i.e., sam-
ples

hat g ~ p(hat g | g).

Typically the GNPE NDE will be conditioned on hat g. Furthermore, these proxy parameters will be used
to transform the data to simplify it.

Parameters:

input_parameters
[dict] Initial parameter values to be perturbed. dict values can be either floats (for training) or torch
Tensors (for inference).

rtype
A dict of proxy parameters.

class dingo.gw.transforms.gnpe_transforms.GNPECoalescenceTimes(ifo_list, kernel,
exact_global_equivariance=True,
inference=False)

Bases: GNPEBase

GNPE [1] Transformation for detector coalescence times.

For each of the detector coalescence times, a proxy is generated by adding a perturbation epsilon from the GNPE
kernel to the true detector time. This proxy is subtracted from the detector time, such that the overall time shift
only amounts to -epsilon in training. This standardizes the input data to the inference network, since the applied
time shifts are always restricted to the range of the kernel.

To preserve information at inference time, conditioning of the inference network on the proxies is required. To
that end, the proxies are stored in sample[‘gnpe_proxies’].

We can enforce an exact equivariance under global time translations, by subtracting one proxy (by convention:
the first one, usually for H1 ifo) from all other proxies, and from the geocent time, see [1]. This is enabled with
the flag exact_global_equivariance.

Note that this transform does not modify the data itself. It only determines the amount by which to time-shift the
data.

[1]: arxiv.org/abs/2111.13139

Parameters

• ifo_list (bilby.gw.detector.InterferometerList) – List of interferometers.

• kernel (str) – Defines a Bilby prior, to be used for all interferometers.

• exact_global_equivariance (bool = True) – Whether to impose the exact global time
translation symmetry.

• inference (bool = False) – Whether to use inference or training mode.

138 Chapter 20. dingo

dingo-gw

dingo.gw.transforms.inference_transforms module

class dingo.gw.transforms.inference_transforms.CopyToExtrinsicParameters(*parameter_list)
Bases: object

Copy parameters specified in self.parameter_list from sample[“parameters”] to sample[“extrinsic_parameters”].

class dingo.gw.transforms.inference_transforms.ExpandStrain(num_samples)
Bases: object

Expand the waveform of sample by adding a batch axis and copying the waveform num_samples times along this
new axis. This is useful for generating num_samples samples at inference time.

class dingo.gw.transforms.inference_transforms.PostCorrectGeocentTime(inverse=False)
Bases: object

Post correction for geocent time: add GNPE proxy (only necessary if exact equivariance is enforced)

class dingo.gw.transforms.inference_transforms.ResetSample(extrinsic_parameters_keys=None)
Bases: object

Resets sample:

• waveform was potentially modified by gnpe transforms, so reset to waveform_

• optionally remove all non-required extrinsic parameters

class dingo.gw.transforms.inference_transforms.ToTorch(device='cpu')
Bases: object

Convert all numpy arrays sample to torch tensors and push them to the specified device. All items of sample that
are not numpy arrays (e.g., dicts of arrays) remain unchanged.

dingo.gw.transforms.noise_transforms module

class dingo.gw.transforms.noise_transforms.AddWhiteNoiseComplex

Bases: object

Adds white noise with a standard deviation determined by self.scale to the complex strain data.

class dingo.gw.transforms.noise_transforms.RepackageStrainsAndASDS(ifos, first_index=0)
Bases: object

Repackage the strains and the asds into an [num_ifos, 3, num_bins] dimensional tensor. Order of ifos is provided
by self.ifos. By convention, [:,i,:] is used for:

i = 0: strain.real i = 1: strain.imag i = 2: 1 / (asd * 1e23)

class dingo.gw.transforms.noise_transforms.SampleNoiseASD(asd_dataset)
Bases: object

Sample a random asds for each detector and add them to sample[‘asds’].

class dingo.gw.transforms.noise_transforms.WhitenAndScaleStrain(scale_factor)
Bases: object

Whiten the strain data by dividing w.r.t. the corresponding asds, and scale it with 1/scale_factor.

In uniform frequency domain the scale factor should be np.sqrt(window_factor) / np.sqrt(4.0 * delta_f). It has
two purposes:

20.1. dingo package 139

dingo-gw

(*) the denominator accounts for frequency binning (*) dividing by window factor accounts for win-
dowing of strain data

class dingo.gw.transforms.noise_transforms.WhitenFixedASD(domain: FrequencyDomain, asd_file: str
| None = None, inverse: bool = False,
precision=None)

Bases: object

Whiten frequency-series data according to an ASD specified in a file. This uses the ASD files contained in Bilby.

Parameters

• domain (FrequencyDomain) – ASD is interpolated to the associated frequency grid.

• asd_file (str) – Name of the ASD file. If None, use the aligo ASD. [Default: None]

• inverse (bool) – Whether to apply the inverse whitening transform, to un-whiten data.
[Default: False]

• precision (str ("single", "double")) – If not None, sets precision of ASD to spec-
ified precision.

class dingo.gw.transforms.noise_transforms.WhitenStrain

Bases: object

Whiten the strain data by dividing w.r.t. the corresponding asds.

dingo.gw.transforms.parameter_transforms module

class dingo.gw.transforms.parameter_transforms.SampleExtrinsicParameters(extrinsic_prior_dict)
Bases: object

Sample extrinsic parameters and add them to sample in a separate dictionary.

property reproduction_dict

class dingo.gw.transforms.parameter_transforms.SelectStandardizeRepackageParameters(parameters_dict,
stan-
dard-
iza-
tion_dict,
in-
verse=False,
as_type=None,
de-
vice='cpu')

Bases: object

This transformation selects the parameters in standardization_dict, normalizes them by setting p = (p - mean) /
std, and repackages the selected parameters to a numpy array.

as_type: str = None
only applies, if self.inverse == True * if None, data type is kept * if ‘dict’, dict with * if ‘pandas’, use
pandas.DataFrame

class dingo.gw.transforms.parameter_transforms.StandardizeParameters(mu, std)
Bases: object

Standardize parameters according to the transform (x - mu) / std.

140 Chapter 20. dingo

dingo-gw

Initialize the standardization transform with means and standard deviations for each parameter

Parameters

• mu (Dict[str, float]) – The (estimated) means

• std (Dict[str, float]) – The (estimated) standard deviations

inverse(samples)
De-standardize the parameter array according to the specified means and standard deviations.

Parameters

• samples (Dict[Dict, Dict]) – A nested dictionary with keys ‘parameters’, ‘waveform’,
‘noise_summary’.

• mu (Only parameters included in) –

• transformed. (std get) –

Module contents

dingo.gw.waveform_generator package

Submodules

dingo.gw.waveform_generator.frame_utils module

These functions are used for transforming between J and L0 frames.

dingo.gw.waveform_generator.frame_utils.convert_J_to_L0_frame(hlm_J, p, wfg,
spin_conversion_phase=None)

dingo.gw.waveform_generator.frame_utils.get_JL0_euler_angles(p, wfg,
spin_conversion_phase=None)

dingo.gw.waveform_generator.frame_utils.rotate_y(angle, vx, vy, vz)

dingo.gw.waveform_generator.frame_utils.rotate_z(angle, vx, vy, vz)

dingo.gw.waveform_generator.waveform_generator module

class dingo.gw.waveform_generator.waveform_generator.NewInterfaceWaveformGenerator(**kwargs)
Bases: WaveformGenerator

Generate polarizations using GWSignal routines in the specified domain for a single GW coalescence given a set
of waveform parameters.

Parameters

• approximant (str) – Waveform “approximant” string understood by lalsimulation This is
defines which waveform model is used.

• domain (Domain) – Domain object that specifies on which physical domain the waveform
polarizations will be generated, e.g. Fourier domain, time domain.

• f_ref (float) – Reference frequency for the waveforms

20.1. dingo package 141

dingo-gw

• f_start (float) – Starting frequency for waveform generation. This is optional, and if not
included, the starting frequency will be set to f_min. This exists so that EOB waveforms can
be generated starting from a lower frequency than f_min.

• mode_list (List[Tuple]) – A list of waveform (ell, m) modes to include when generating
the polarizations.

• spin_conversion_phase (float = None) – Value for phiRef when computing cartesian
spins from bilby spins via bilby_to_lalsimulation_spins. The common convention is to use
the value of the phase parameter here, which is also used in the spherical harmonics when
combining the different modes. If spin_conversion_phase = None, this default behavior is
adapted. For dingo, this convention for the phase parameter makes it impossible to treat the
phase as an extrinsic parameter, since we can only account for the change of phase in the
spherical harmonics when changing the phase (in order to also change the cartesian spins –
specifically, to rotate the spins by phase in the sx-sy plane – one would need to recompute
the modes, which is expensive). By setting spin_conversion_phase != None, we impose
the convention to always use phase = spin_conversion_phase when computing the cartesian
spins.

generate_FD_modes_LO(parameters)
Generate FD modes in the L0 frame.

Parameters
parameters (dict) – Dictionary of parameters for the waveform. For details see see
self.generate_hplus_hcross.

Returns

• hlm_fd (dict) – Dictionary with (l,m) as keys and the corresponding FD modes in lal format
as values.

• iota (float)

generate_FD_waveform(parameters_gwsignal: Dict)→ Dict[str, ndarray]
Generate Fourier domain GW polarizations (h_plus, h_cross).

Parameters
parameters_lal – A tuple of parameters for the lalsimulation waveform generator

Returns
A dictionary of generated waveform polarizations

Return type
pol_dict

generate_TD_modes_L0(parameters)
Generate TD modes in the L0 frame.

Parameters
parameters (dict) – Dictionary of parameters for the waveform. For details see see
self.generate_hplus_hcross.

Returns

• hlm_td (dict) – Dictionary with (l,m) as keys and the corresponding TD modes in lal format
as values.

• iota (float)

142 Chapter 20. dingo

dingo-gw

generate_TD_modes_L0_conditioned_extra_time(parameters)
Generate TD modes in the L0 frame applying a conditioning routine which mimics the behaviour of
the standard LALSimulation conditioning (https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_
inspiral_generator_conditioning_8c.html#ac78b5fcdabf8922a3ac479da20185c85)

Essentially, a new starting frequency is computed to have some extra cycles that will be tapered. Some extra
buffer time is also added to ensure that the waveform at the requested starting frequency is not modified,
while still having a tapered timeseries suited for clean FFT.

Parameters
parameters (dict) – Dictionary of parameters for the waveform. For details see
self.generate_hplus_hcross.

Returns

• hlm_td (dict) – Dictionary with (l,m) as keys and the corresponding TD modes in lal format
as values.

• iota (float)

generate_TD_waveform(parameters_gwsignal: Dict)→ Dict[str, ndarray]
Generate time domain GW polarizations (h_plus, h_cross)

Parameters
parameters_gwsignal – A dict of parameters for the gwsignal waveform generator

Returns
A dictionary of generated waveform polarizations

Return type
pol_dict

generate_hplus_hcross_m(parameters: Dict[str, float])→ Dict[tuple, Dict[str, ndarray]]
Generate GW polarizations (h_plus, h_cross), separated into contributions from the different modes. This
method is identical to self.generate_hplus_hcross, except that it generates the individual contributions of the
modes to the polarizations and sorts these according to their transformation behavior (see below), instead
of returning the overall sum.

This is useful in order to treat the phase as an extrinsic parameter. Instead of {“h_plus”: hp, “h_cross”:
hc}, this method returns a dict in the form of {m: {“h_plus”: hp_m, “h_cross”: hc_m} for m in [-
l_max,. . . ,0,. . . ,l_max]}. Each key m contains the contribution to the polarization that transforms according
to exp(-1j * m * phase) under phase transformations (due to the spherical harmonics).

Note:

• pol_m[m] contains contributions of the m modes and and the -m modes. This is because the
frequency domain (FD) modes have a positive frequency part which transforms as exp(-1j * m *
phase), while the negative frequency part transforms as exp(+1j * m * phase). Typically, one of
these dominates [e.g., the (2,2) mode is dominated by the negative frequency part and the (-2,2)
mode is dominated by the positive frequency part] such that the sum of (l,|m|) and (l,-|m|) modes
transforms approximately as exp(1j * |m| * phase), which is e.g. used for phase marginalization in
bilby/lalinference. However, this is not exact. In this method we account for this effect, such that
each contribution pol_m[m] transforms exactly as exp(-1j * m * phase).

• Phase shifts contribute in two ways: Firstly via the spherical harmonics, which we account for
with the exp(-1j * m * phase) transformation. Secondly, the phase determines how the PE spins
transform to cartesian spins, by rotating (sx,sy) by phase. This is not accounted for in this function.
Instead, the phase for computing the cartesian spins is fixed to self.spin_conversion_phase (if not
None). This effectively changes the PE parameters {phi_jl, phi_12} to parameters {phi_jl_prime,
phi_12_prime}. For parameter estimation, a postprocessing operation can be applied to account

20.1. dingo package 143

https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_inspiral_generator_conditioning_8c.html#ac78b5fcdabf8922a3ac479da20185c85
https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_inspiral_generator_conditioning_8c.html#ac78b5fcdabf8922a3ac479da20185c85

dingo-gw

for this, {phi_jl_prime, phi_12_prime} -> {phi_jl, phi_12}. See also documentation of __init__
method for more information on self.spin_conversion_phase.

Differences to self.generate_hplus_hcross: - We don’t catch errors yet TODO - We don’t apply transforms
yet TODO

Parameters
parameters (dict) – Dictionary of parameters for the waveform. For details see see
self.generate_hplus_hcross.

Returns
pol_m – Dictionary with contributions to h_plus and h_cross, sorted by their transforma-
tion behaviour under phase shifts: {m: {“h_plus”: hp_m, “h_cross”: hc_m} for m in [-
l_max,. . . ,0,. . . ,l_max]} Each contribution h_m transforms as exp(-1j * m * phase) under
phase shifts (for fixed self.spin_conversion_phase, see above).

Return type
dict

dingo.gw.waveform_generator.waveform_generator.SEOBNRv4PHM_maximum_starting_frequency(total_mass:
float,
fudge:
float
=
0.99)
→
float

Given a total mass return the largest possible starting frequency allowed for SEOBNRv4PHM and similar
effective-one-body models.

The intended use for this function is at the stage of designing a data set: after choosing a mass prior one can use
it to figure out which prior samples would run into an issue when generating an EOB waveform, and tweak the
parameters to reduce the number of failing configurations.

Parameters

• total_mass – Total mass in units of solar masses

• fudge – A fudge factor

Returns
The largest possible starting frequency in Hz

Return type
f_max_Hz

class dingo.gw.waveform_generator.waveform_generator.WaveformGenerator(approximant: str,
domain: Domain, f_ref:
float, f_start: float |
None = None,
mode_list: List[Tuple] |
None = None,
transform=None,
spin_conversion_phase=None,
**kwargs)

Bases: object

Generate polarizations using LALSimulation routines in the specified domain for a single GW coalescence given
a set of waveform parameters.

144 Chapter 20. dingo

dingo-gw

Parameters

• approximant (str) – Waveform “approximant” string understood by lalsimulation This is
defines which waveform model is used.

• domain (Domain) – Domain object that specifies on which physical domain the waveform
polarizations will be generated, e.g. Fourier domain, time domain.

• f_ref (float) – Reference frequency for the waveforms

• f_start (float) – Starting frequency for waveform generation. This is optional, and if not
included, the starting frequency will be set to f_min. This exists so that EOB waveforms can
be generated starting from a lower frequency than f_min.

• mode_list (List[Tuple]) – A list of waveform (ell, m) modes to include when generating
the polarizations.

• spin_conversion_phase (float = None) – Value for phiRef when computing cartesian
spins from bilby spins via bilby_to_lalsimulation_spins. The common convention is to use
the value of the phase parameter here, which is also used in the spherical harmonics when
combining the different modes. If spin_conversion_phase = None, this default behavior is
adapted. For dingo, this convention for the phase parameter makes it impossible to treat the
phase as an extrinsic parameter, since we can only account for the change of phase in the
spherical harmonics when changing the phase (in order to also change the cartesian spins –
specifically, to rotate the spins by phase in the sx-sy plane – one would need to recompute
the modes, which is expensive). By setting spin_conversion_phase != None, we impose
the convention to always use phase = spin_conversion_phase when computing the cartesian
spins.

generate_FD_modes_LO(parameters)
Generate FD modes in the L0 frame.

Parameters
parameters (dict) – Dictionary of parameters for the waveform. For details see see
self.generate_hplus_hcross.

Returns

• hlm_fd (dict) – Dictionary with (l,m) as keys and the corresponding FD modes in lal format
as values.

• iota (float)

generate_FD_waveform(parameters_lal: Tuple)→ Dict[str, ndarray]
Generate Fourier domain GW polarizations (h_plus, h_cross).

Parameters
parameters_lal – A tuple of parameters for the lalsimulation waveform generator

Returns
A dictionary of generated waveform polarizations

Return type
pol_dict

generate_TD_modes_L0(parameters)
Generate TD modes in the L0 frame.

Parameters
parameters (dict) – Dictionary of parameters for the waveform. For details see see
self.generate_hplus_hcross.

20.1. dingo package 145

dingo-gw

Returns

• hlm_td (dict) – Dictionary with (l,m) as keys and the corresponding TD modes in lal format
as values.

• iota (float)

generate_TD_waveform(parameters_lal: Tuple)→ Dict[str, ndarray]
Generate time domain GW polarizations (h_plus, h_cross)

Parameters
parameters_lal – A tuple of parameters for the lalsimulation waveform generator

Returns
A dictionary of generated waveform polarizations

Return type
pol_dict

generate_hplus_hcross(parameters: Dict[str, float], catch_waveform_errors=True)→ Dict[str, ndarray]
Generate GW polarizations (h_plus, h_cross).

If the generation of the lalsimulation waveform fails with an “Input domain error”, we return NaN polar-
izations.

Use the domain, approximant, and mode_list specified in the constructor along with the waveform param-
eters to generate the waveform polarizations.

Parameters

• parameters (Dict[str, float]) – A dictionary of parameter names and scalar values.
The parameter dictionary must include the following keys. For masses, spins, and distance
there are multiple options.

Mass: (mass_1, mass_2) or a pair of quantities from
((chirp_mass, total_mass), (mass_ratio, symmetric_mass_ratio))

Spin:
(a_1, a_2, tilt_1, tilt_2, phi_12, phi_jl) if precessing binary or (chi_1, chi_2) if the binary
has aligned spins

Reference frequency: f_ref at which spin vectors are defined Extrinsic:

Distance: one of (luminosity_distance, redshift, comoving_distance) Inclination:
theta_jn Reference phase: phase Geocentric time: geocent_time (GPS time)

The following parameters are not required:
Sky location: ra, dec, Polarization angle: psi

Units:
Masses should be given in units of solar masses. Distance should be given in mega-
parsecs (Mpc). Frequencies should be given in Hz and time in seconds. Spins should be
dimensionless. Angles should be in radians.

• catch_waveform_errors (bool) – Whether to catch lalsimulation errors

Returns
A dictionary of generated waveform polarizations

Return type
wf_dict

146 Chapter 20. dingo

dingo-gw

generate_hplus_hcross_m(parameters: Dict[str, float])→ Dict[tuple, Dict[str, ndarray]]
Generate GW polarizations (h_plus, h_cross), separated into contributions from the different modes. This
method is identical to self.generate_hplus_hcross, except that it generates the individual contributions of the
modes to the polarizations and sorts these according to their transformation behavior (see below), instead
of returning the overall sum.

This is useful in order to treat the phase as an extrinsic parameter. Instead of {“h_plus”: hp, “h_cross”:
hc}, this method returns a dict in the form of {m: {“h_plus”: hp_m, “h_cross”: hc_m} for m in [-
l_max,. . . ,0,. . . ,l_max]}. Each key m contains the contribution to the polarization that transforms according
to exp(-1j * m * phase) under phase transformations (due to the spherical harmonics).

Note:

• pol_m[m] contains contributions of the m modes and and the -m modes. This is because the
frequency domain (FD) modes have a positive frequency part which transforms as exp(-1j * m *
phase), while the negative frequency part transforms as exp(+1j * m * phase). Typically, one of
these dominates [e.g., the (2,2) mode is dominated by the negative frequency part and the (-2,2)
mode is dominated by the positive frequency part] such that the sum of (l,|m|) and (l,-|m|) modes
transforms approximately as exp(1j * |m| * phase), which is e.g. used for phase marginalization in
bilby/lalinference. However, this is not exact. In this method we account for this effect, such that
each contribution pol_m[m] transforms exactly as exp(-1j * m * phase).

• Phase shifts contribute in two ways: Firstly via the spherical harmonics, which we account for
with the exp(-1j * m * phase) transformation. Secondly, the phase determines how the PE spins
transform to cartesian spins, by rotating (sx,sy) by phase. This is not accounted for in this function.
Instead, the phase for computing the cartesian spins is fixed to self.spin_conversion_phase (if not
None). This effectively changes the PE parameters {phi_jl, phi_12} to parameters {phi_jl_prime,
phi_12_prime}. For parameter estimation, a postprocessing operation can be applied to account
for this, {phi_jl_prime, phi_12_prime} -> {phi_jl, phi_12}. See also documentation of __init__
method for more information on self.spin_conversion_phase.

Differences to self.generate_hplus_hcross: - We don’t catch errors yet TODO - We don’t apply transforms
yet TODO

Parameters
parameters (dict) – Dictionary of parameters for the waveform. For details see see
self.generate_hplus_hcross.

Returns
pol_m – Dictionary with contributions to h_plus and h_cross, sorted by their transforma-
tion behaviour under phase shifts: {m: {“h_plus”: hp_m, “h_cross”: hc_m} for m in [-
l_max,. . . ,0,. . . ,l_max]} Each contribution h_m transforms as exp(-1j * m * phase) under
phase shifts (for fixed self.spin_conversion_phase, see above).

Return type
dict

setup_mode_array(mode_list: List[Tuple])→ Dict
Define a mode array to select waveform modes to include in the polarizations from a list of modes.

Parameters
mode_list (a list of (ell, m) modes) –

Returns
A lal parameter dictionary

Return type
lal_params

20.1. dingo package 147

dingo-gw

property spin_conversion_phase

dingo.gw.waveform_generator.waveform_generator.generate_waveforms_parallel(waveform_generator:
WaveformGenera-
tor,
parame-
ter_samples:
DataFrame, pool:
Pool | None =
None)→ Dict[str,
ndarray]

Generate a waveform dataset, optionally in parallel.

Parameters

• waveform_generator (WaveformGenerator) – A WaveformGenerator instance

• parameter_samples (pd.DataFrame) – Intrinsic parameter samples

• pool (multiprocessing.Pool) – Optional pool of workers for parallel generation

Returns
A dictionary of all generated polarizations stacked together

Return type
polarizations

dingo.gw.waveform_generator.waveform_generator.generate_waveforms_task_func(args: Tuple,
wave-
form_generator:
WaveformGener-
ator)→ Dict[str,
ndarray]

Picklable wrapper function for parallel waveform generation.

Parameters

• args – A tuple of (index, pandas.core.series.Series)

• waveform_generator – A WaveformGenerator instance

Return type
The generated waveform polarization dictionary

dingo.gw.waveform_generator.waveform_generator.sum_contributions_m(x_m, phase_shift=0.0)
Sum the contributions over m-components, optionally introducing a phase shift.

dingo.gw.waveform_generator.wfg_utils module

dingo.gw.waveform_generator.wfg_utils.get_polarizations_from_fd_modes_m(hlm_fd, iota, phase)

dingo.gw.waveform_generator.wfg_utils.get_starting_frequency_for_SEOBRNRv5_conditioning(parameters)
Compute starting frequency needed for having 3 extra cycles for tapering the TD modes. It returns the needed
quantities to apply the standard LALSimulation conditioning routines to the TD modes.

Parameters
parameters (dict) – Dictionary of parameters suited for GWSignal (obtained with NewInter-
faceWaveformGenerator._convert_parameters)

148 Chapter 20. dingo

dingo-gw

Returns

• f_min (float) – Waveform starting frequency

• f_start (float) – New waveform starting frequency

• extra_time (float) – Extra time to take care of situations where the frequency is close to
merger

• original_f_min (float) – Initial waveform starting frequency

• f_isco (float) – ISCO frequency

dingo.gw.waveform_generator.wfg_utils.get_tapering_window_for_complex_time_series(h, taper-
ing_flag:
int = 1)

Get window for tapering of a complex time series from the lal backend. This is done by tapering the time series
with lal, and dividing tapered output by untapered input. lal does not support tapering of complex time series
objects, so as a workaround we taper only the real part of the array and extract the window based on this.

Parameters

• h – complex lal time series object

• tapering_flag (int = 1) –

Flag for tapering. See e.g. lines 2773-2777 in
https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/ _l_a_l_sim_inspiral_waveform_taper_8c_source.html#l00222

tapering_flag = 1 corresponds to LAL_SIM_INSPIRAL_TAPER_START

Returns
window – Array of length h.data.length, with the window used for tapering.

Return type
np.ndarray

dingo.gw.waveform_generator.wfg_utils.linked_list_modes_to_dict_modes(hlm_ll)
Convert linked list of modes into dictionary with keys (l,m).

dingo.gw.waveform_generator.wfg_utils.taper_td_modes_for_SEOBRNRv5_extra_time(h, extra_time,
f_min, origi-
nal_f_min,
f_isco)

Apply standard tapering procedure mimicking LALSimulation routine (https://lscsoft.docs.ligo.org/lalsuite/
lalsimulation/_l_a_l_sim_inspiral_generator_conditioning_8c.html#ac78b5fcdabf8922a3ac479da20185c85)

Parameters

• h – complex gwpy TimeSeries object

• extra_time (float) – Extra time to take care of situations where the frequency is close to
merger

• f_min (float) – Starting frequency employed in waveform generation

• original_f_min (float) – Initial starting frequency requested by the user

• f_isco – ISCO frequency

Returns
complex lal timeseries object

Return type
h_return

20.1. dingo package 149

https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/
https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_inspiral_generator_conditioning_8c.html#ac78b5fcdabf8922a3ac479da20185c85
https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_inspiral_generator_conditioning_8c.html#ac78b5fcdabf8922a3ac479da20185c85

dingo-gw

dingo.gw.waveform_generator.wfg_utils.taper_td_modes_in_place(hlm_td, tapering_flag: int = 1)
Taper the time domain modes in place.

Parameters

• hlm_td (dict) – Dictionary with (l,m) keys and the complex lal time series objects for the
corresponding modes.

• tapering_flag (int = 1) –

Flag for tapering. See e.g. lines 2773-2777 in
https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/ _l_a_l_sim_inspiral_waveform_taper_8c_source.html#l00222

tapering_flag = 1 corresponds to LAL_SIM_INSPIRAL_TAPER_START

dingo.gw.waveform_generator.wfg_utils.td_modes_to_fd_modes(hlm_td, domain)
Transform dict of td modes to dict of fd modes via FFT. The td modes are expected to be tapered.

Parameters

• hlm_td (dict) – Dictionary with (l,m) keys and the complex lal time series objects for the
corresponding tapered modes.

• domain (dingo.gw.domains.FrequencyDomain) – Target domain after FFT.

Returns
hlm_fd – Dictionary with (l,m) keys and numpy arrays with the corresponding modes as values.

Return type
dict

Module contents

Submodules

dingo.gw.SVD module

class dingo.gw.SVD.ApplySVD(svd_basis: SVDBasis, inverse: bool = False)
Bases: object

Transform operator for applying an SVD compression / decompression.

Parameters

• svd_basis (SVDBasis) –

• inverse (bool) – Whether to apply for the forward (compression) or inverse (decompres-
sion) transform. Default: False.

class dingo.gw.SVD.SVDBasis(file_name=None, dictionary=None)
Bases: DingoDataset

For constructing, provide either file_name, or dictionary containing data and settings entries, or neither.

Parameters

• file_name (str) – HDF5 file containing a dataset

• dictionary (dict) – Contains settings and data entries. The data keys should be the same
as save_keys

150 Chapter 20. dingo

https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/

dingo-gw

• data_keys (list) – Variables that should be saved / loaded. This allows for class to store
additional variables beyond those that are saved. Typically, this list would be provided by
any subclass.

compress(data: ndarray)
Convert from data (e.g., frequency series) to compressed representation in terms of basis coefficients.

Parameters
data (np.ndarray) –

Return type
array of basis coefficients

compute_test_mismatches(data: ndarray, parameters: DataFrame | None = None, increment: int = 50,
verbose: bool = False)

Test SVD basis by computing mismatches of compressed / decompressed data against original data. Results
are saved as a DataFrame.

Parameters

• data (np.ndarray) – Array of data sets to validate against.

• parameters (pd.DataFrame) – Optional labels for the data sets. This is useful for check-
ing performance on particular regions of the parameter space.

• increment (int) – Specifies SVD truncations for computing mismatches. E.g., increment
= 50 means that the SVD will be truncated at size [50, 100, 150, . . . , len(data)].

• verbose (bool) – Whether to print summary statistics.

dataset_type = 'svd_basis'

decompress(coefficients: ndarray)
Convert from basis coefficients back to raw data representation.

Parameters
coefficients (np.ndarray) – Array of basis coefficients

Return type
array of decompressed data

from_dictionary(dictionary: dict)
Load the SVD basis from a dictionary.

Parameters
dictionary (dict) – The dictionary should contain at least a ‘V’ key, and optionally an ‘s’
key.

from_file(filename)
Load the SVD basis from a HDF5 file.

Parameters
filename (str) –

generate_basis(training_data: ndarray, n: int, method: str = 'random')
Generate the SVD basis from training data and store it.

The SVD decomposition takes

training_data = U @ diag(s) @ Vh

where U and Vh are unitary.

20.1. dingo package 151

dingo-gw

Parameters

• training_data (np.ndarray) – Array of waveform data on the physical domain

• n (int) – Number of basis elements to keep. n=0 keeps all basis elements.

• method (str) – Select SVD method, ‘random’ or ‘scipy’

print_validation_summary()

Print a summary of the validation mismatches.

dingo.gw.domains module

class dingo.gw.domains.Domain

Bases: ABC

Defines the physical domain on which the data of interest live.

This includes a specification of the bins or points, and a few additional properties associated with the data.

abstract property domain_dict

Enables to rebuild the domain via calling build_domain(domain_dict).

abstract property duration: float

Waveform duration in seconds.

abstract property f_max: float

The maximum frequency [Hz] is set to half the sampling rate.

abstract property max_idx: int

abstract property min_idx: int

abstract property noise_std: float

Standard deviation of the whitened noise distribution

abstract property sampling_rate: float

The sampling rate of the data [Hz].

abstract time_translate_data(data, dt)→ ndarray
Time translate strain data by dt seconds.

abstract update(new_settings: dict)

class dingo.gw.domains.FrequencyDomain(f_min: float, f_max: float, delta_f: float, window_factor: float |
None = None)

Bases: Domain

Defines the physical domain on which the data of interest live.

The frequency bins are assumed to be uniform between [0, f_max] with spacing delta_f. Given a finite length
of time domain data, the Fourier domain data starts at a frequency f_min and is zero below this frequency.
window_kwargs specify windowing used for FFT to obtain FD data from TD data in practice.

static add_phase(data, phase)
Add a (frequency-dependent) phase to a frequency series. Allows for batching, as well as additional chan-
nels (such as detectors). Accounts for the fact that the data could be a complex frequency series or real and
imaginary parts.

Convention: the phase phi(f) is defined via exp(- 1j * phi(f)).

152 Chapter 20. dingo

dingo-gw

Parameters

• data (Union[np.array, torch.Tensor]) –

• phase (Union[np.array, torch.Tensor]) –

Return type
New array or tensor of the same shape as data.

property delta_f: float

The frequency spacing of the uniform grid [Hz].

property domain_dict

Enables to rebuild the domain via calling build_domain(domain_dict).

property duration: float

Waveform duration in seconds.

property f_max: float

The maximum frequency [Hz] is typically set to half the sampling rate.

property f_min: float

The minimum frequency [Hz].

property frequency_mask: ndarray

Mask which selects frequency bins greater than or equal to the starting frequency

property frequency_mask_length: int

Number of samples in the subdomain domain[frequency_mask].

get_sample_frequencies_astype(data)
Returns a 1D frequency array compatible with the last index of data array.

Decides whether array is numpy or torch tensor (and cuda vs cpu), and whether it contains the leading zeros
below f_min.

Parameters
data (Union[np.array, torch.Tensor]) – Sample data

Return type
frequency array compatible with last index

property max_idx

property min_idx

property noise_std: float

Standard deviation of the whitened noise distribution.

To have noise that comes from a multivariate unit normal distribution, you must divide by this factor. In
practice, this means dividing the whitened waveforms by this.

TODO: This description makes some assumptions that need to be clarified. Windowing of TD data; taper-
ing window has a slope -> reduces power only for noise, but not for the signal which is in the main part
unaffected by the taper

property sample_frequencies

property sample_frequencies_torch

property sample_frequencies_torch_cuda

20.1. dingo package 153

dingo-gw

property sampling_rate: float

The sampling rate of the data [Hz].

set_new_range(f_min: float | None = None, f_max: float | None = None)
Set a new range [f_min, f_max] for the domain. This is only allowed if the new range is contained within
the old one.

time_translate_data(data, dt)
Time translate frequency-domain data by dt. Time translation corresponds (in frequency domain) to mul-
tiplication by

exp(−2𝜋𝑖 𝑓 𝑑𝑡).

This method allows for multiple batch dimensions. For torch.Tensor data, allow for either a complex or a
(real, imag) representation.

Parameters

• data (array-like (numpy, torch)) – Shape (B, C, N), where

– B corresponds to any dimension >= 0,

– C is either absent (for complex data) or has dimension >= 2 (for data represented as real
and imaginary parts), and

– N is either len(self) or len(self)-self.min_idx (for truncated data).

• dt (torch tensor, or scalar (if data is numpy)) – Shape (B)

Return type
Array-like of the same form as data.

update(new_settings: dict)
Update the domain with new settings. This is only allowed if the new settings are “compatible” with the
old ones. E.g., f_min should be larger than the existing f_min.

Parameters
new_settings (dict) – Settings dictionary. Must contain a subset of the keys contained in
domain_dict.

update_data(data: ndarray, axis: int = -1, low_value: float = 0.0)
Adjusts data to be compatible with the domain:

• Below f_min, it sets the data to low_value (typically 0.0 for a waveform, but for a PSD this might be
a large value).

• Above f_max, it truncates the data array.

Parameters

• data (np.ndarray) – Data array

• axis (int) – Which data axis to apply the adjustment along.

• low_value (float) – Below f_min, set the data to this value.

Returns
The new data array.

Return type
np.ndarray

154 Chapter 20. dingo

dingo-gw

property window_factor

class dingo.gw.domains.PCADomain

Bases: Domain

TODO

property noise_std: float

Standard deviation of the whitened noise distribution.

To have noise that comes from a multivariate unit normal distribution, you must divide by this factor. In
practice, this means dividing the whitened waveforms by this.

In the continuum limit in time domain, the standard deviation of white noise would at each point go to
infinity, hence the delta_t factor.

class dingo.gw.domains.TimeDomain(time_duration: float, sampling_rate: float)
Bases: Domain

Defines the physical time domain on which the data of interest live.

The time bins are assumed to be uniform between [0, duration] with spacing 1 / sampling_rate. window_factor
is used to compute noise_std().

property delta_t: float

The size of the time bins

property domain_dict

Enables to rebuild the domain via calling build_domain(domain_dict).

property duration: float

Waveform duration in seconds.

property f_max: float

The maximum frequency [Hz] is typically set to half the sampling rate.

property max_idx: int

property min_idx: int

property noise_std: float

Standard deviation of the whitened noise distribution.

To have noise that comes from a multivariate unit normal distribution, you must divide by this factor. In
practice, this means dividing the whitened waveforms by this.

In the continuum limit in time domain, the standard deviation of white noise would at each point go to
infinity, hence the delta_t factor.

property sampling_rate: float

The sampling rate of the data [Hz].

time_translate_data(data, dt)→ ndarray
Time translate strain data by dt seconds.

dingo.gw.domains.build_domain(settings: Dict)→ Domain
Instantiate a domain class from settings.

Parameters
settings (dict) – Dicionary with ‘type’ key denoting the type of domain, and keys correspond-
ing to the kwargs needed to construct the Domain.

20.1. dingo package 155

dingo-gw

Return type
A Domain instance of the correct type.

dingo.gw.domains.build_domain_from_model_metadata(model_metadata)→ Domain
Instantiate a domain class from settings of model.

Parameters
model_metadata (dict) – model metadata containing information to build the domain typically
obtained from the model.metadata attribute

Return type
A Domain instance of the correct type.

dingo.gw.download_strain_data module

dingo.gw.download_strain_data.download_event_data_in_FD(detectors, time_event, time_segment,
time_buffer, window,
num_segments_psd=128)

Download event data in frequency domain. This includes strain data for the event at GPS time t_event as well as
the correcponding ASD.

Parameters

• detectors (list) – list of detectors specified via strings

• time_event (float) – GPS time of the event

• time_segment (float) – length of the strain segment, in seconds

• time_buffer (float) – specifies buffer time after time_event, in seconds

• window (Union(np.ndarray, dict)) – Window used for Fourier transforming the event
strain data. Either provided directly as np.ndarray, or as dict in which case the window is
generated by window = dingo.gw.gwutils.get_window(**window).

• num_segments_psd (int = 128) – number of segments used for PSD generation

dingo.gw.download_strain_data.download_strain_data_in_FD(det, time_event, time_segment,
time_buffer, window)

Download strain data for a GW event at GPS time time_event. The segment is time_segment seconds long,
including time_buffer seconds after the event. The strain is Fourier transformed, the frequency domain strain is
then time shifted by time_buffer, such that the event occurs at t=0.

Parameters

• det (str) – detector

• time_event (float) – GPS time of the event

• time_segment (float) – length of the strain segment, in seconds

• time_buffer (float) – specifies buffer time after time_event, in seconds

• window (Union(np.ndarray, dict)) – Window used for Fourier transforming the event
strain data. Either provided directly as np.ndarray, or as dict in which case the window is
generated by window = dingo.gw.gwutils.get_window(**window).

Returns
event_strain – array with the frequency domain strain

Return type
np.array

156 Chapter 20. dingo

dingo-gw

dingo.gw.download_strain_data.estimate_single_psd(time_start, time_segment, window, f_s=4096,
num_segments: int = 128, det=None,
channel=None)

Download strain data and generate a PSD based on these. Use num_segments of length time_segment, starting
at GPS time time_start. If no channel is specified, GWOSC is used to download the data.

Parameters

• time_start (float) – start GPS time for PSD estimation

• time_segment (float) – time for a single segment for PSD information, in seconds

• window (Union(np.ndarray, dict)) – Window used for PSD generation, needs to
be the same as used for Fourier transform of event strain data. Either provided di-
rectly as np.ndarray, or as dict in which case the window is generated by window =
dingo.gw.gwutils.get_window(**window).

• num_segments (int = 256) – number of segments used for PSD generation

• det (str) – If provided, will download data from GWOSC using Time-
Series.fetch_open_data(). Mutually exclusive with ‘channel’.

• channel (str) – If provided, will download the data from the channel instead of gwosc
using TimeSeries.get()

Returns
psd – array of psd

Return type
np.array

dingo.gw.gwutils module

dingo.gw.gwutils.get_extrinsic_prior_dict(extrinsic_prior)
Build dict for extrinsic prior by starting with default_extrinsic_dict, and overwriting every element for which
extrinsic_prior is not default. TODO: Move to dingo.gw.prior.py?

dingo.gw.gwutils.get_mismatch(a, b, domain, asd_file=None)
Mistmatch is 1 - overlap, where overlap is defined by inner(a, b) / sqrt(inner(a, a) * inner(b, b)). See e.g. Eq.
(44) in https://arxiv.org/pdf/1106.1021.pdf.

Parameters

• a –

• b –

• domain –

• asd_file –

dingo.gw.gwutils.get_standardization_dict(extrinsic_prior_dict, wfd, selected_parameters,
transform=None)

Calculates the mean and standard deviation of parameters. This is needed for standardizing neural-network input
and output.

Parameters

• extrinsic_prior_dict (dict) –

• wfd (WaveformDataset) –

20.1. dingo package 157

https://arxiv.org/pdf/1106.1021.pdf

dingo-gw

• selected_parameters (list[str]) – List of parameters for which to estimate standard-
ization factors.

• transform (Transform) – Operator that will generate samples for parameters contained in
selected_parameters that are not contained in the intrinsic or extrinsic prior. (E.g., H1_time,
L1_time_proxy)

dingo.gw.gwutils.get_window(window_kwargs)
Compute window from window_kwargs.

dingo.gw.gwutils.get_window_factor(window)
Compute window factor. If window is not provided as array or tensor but as window_kwargs, first build the
window.

dingo.gw.injection module

class dingo.gw.injection.GWSignal(wfg_kwargs: dict, wfg_domain: FrequencyDomain, data_domain:
FrequencyDomain, ifo_list: list, t_ref: float)

Bases: object

Base class for generating gravitational wave signals in interferometers. Generates waveform polarizations based
on provided parameters, and then projects to detectors.

Includes option for whitening the signal based on a provided ASD.

Parameters

• wfg_kwargs (dict) – Waveform generator parameters [approximant, f_ref, and (optionally)
f_start].

• wfg_domain (FrequencyDomain) – Domain used for waveform generation. This can po-
tentially deviate from the final domain, having a wider frequency range needed for waveform
generation.

• data_domain (FrequencyDomain) – Domain object for final signal.

• ifo_list (list) – Names of interferometers for projection.

• t_ref (float) – Reference time that specifies ifo locations.

property asd

Amplitude spectral density.

Either a single array, a dict (for individual interferometers), or an ASDDataset, from which random ASDs
are drawn.

property calibration_marginalization_kwargs

Dictionary with the following keys:

calibration_envelope
Dictionary of the form {“H1”: filepath, “L1”: filepath, . . . } with locations of lookup tables for the
calibration uncertainty curves.

num_calibration_nodes
Number of nodes for the calibration model.

num_calibration_curves
Number of calibration curves to use in marginalization.

158 Chapter 20. dingo

dingo-gw

signal(theta)
Compute the GW signal for parameters theta.

Step 1: Generate polarizations Step 2: Project polarizations onto detectors; optionally (depending on
self.whiten) whiten and scale.

Parameters
theta (dict) – Signal parameters. Includes intrinsic parameters to be passed to waveform
generator, and extrinsic parameters for detector projection.

Returns

keys:
waveform: GW strain signal for each detector. extrinsic_parameters: {} parameters: wave-
form parameters asd (if set): amplitude spectral density for each detector

Return type
dict

signal_m(theta)
Compute the GW signal for parameters theta. Same as self.signal(theta) method, but it does not sum the con-
tributions of the individual modes, and instead returns a dict {m: pol_m for m in [-l_max,. . . ,0,. . . ,l_max]}
where each contribution pol_m transforms as exp(-1j * m * phase_shift) under phase shifts.

Step 1: Generate polarizations Step 2: Project polarizations onto detectors;

optionally (depending on self.whiten) whiten and scale.

Parameters
theta (dict) – Signal parameters. Includes intrinsic parameters to be passed to waveform
generator, and extrinsic parameters for detector projection.

Returns

keys:

waveform:
GW strain signal for each detector, with individual contributions {m: pol_m for m in
[-l_max,. . . ,0,. . . ,l_max]}

extrinsic_parameters: {} parameters: waveform parameters asd (if set): amplitude spectral
density for each detector

Return type
dict

property whiten

Bool specifying whether to whiten (and scale) generated signals.

class dingo.gw.injection.Injection(prior, **gwsignal_kwargs)
Bases: GWSignal

Produces injections of signals (with random or specified parameters) into stationary Gaussian noise. Output is
not whitened.

Parameters

• prior (PriorDict) – Prior used for sampling random parameters.

• gwsignal_kwargs – Arguments to be passed to GWSignal base class.

20.1. dingo package 159

dingo-gw

classmethod from_posterior_model_metadata(metadata)
Instantiate an Injection based on a posterior model. The prior, waveform settings, etc., will all be consistent
with what the model was trained with.

Parameters
metadata (dict) – Dict which you can get via PosteriorModel.metadata

injection(theta)
Generate an injection based on specified parameters.

This is a signal + noise consistent with the amplitude spectral density in self.asd. If self.asd is an ASD-
Dataset, then it uses a random ASD from this dataset.

Data are not whitened.

Parameters
theta (dict) – Parameters used for injection.

Returns

keys:
waveform: data (signal + noise) in each detector extrinsic_parameters: {} parameters:
waveform parameters asd (if set): amplitude spectral density for each detector

Return type
dict

random_injection()

Generate a random injection.

This is a signal + noise consistent with the amplitude spectral density in self.asd. If self.asd is an ASD-
Dataset, then it uses a random ASD from this dataset.

Data are not whitened.

Returns

keys:
waveform: data (signal + noise) in each detector extrinsic_parameters: {} parameters:
waveform parameters asd (if set): amplitude spectral density for each detector

Return type
dict

dingo.gw.likelihood module

class dingo.gw.likelihood.StationaryGaussianGWLikelihood(wfg_kwargs, wfg_domain, data_domain,
event_data, t_ref=None,
time_marginalization_kwargs=None,
phase_marginalization_kwargs=None,
calibra-
tion_marginalization_kwargs=None,
phase_grid=None)

Bases: GWSignal, Likelihood

Implements GW likelihood for stationary, Gaussian noise.

Parameters

• wfg_kwargs (dict) – Waveform generator parameters (at least approximant and f_ref).

160 Chapter 20. dingo

dingo-gw

• wfg_domain (dingo.gw.domains.Domain) – Domain used for waveform generation. This
can potentially deviate from the final domain, having a wider frequency range needed for
waveform generation.

• data_domain (dingo.gw.domains.Domain) – Domain object for event data.

• event_data (dict) – GW data. Contains strain data in event_data[“waveforms”] and asds
in event_data[“asds”].

• t_ref (float) – Reference time; true geocent time for GW is t_ref + theta[“geocent_time”].

• time_marginalization_kwargs (dict) – Time marginalization parameters. If None, no
time marginalization is used.

• calibration_marginalization_kwargs (dict) – Calibration marginalization parame-
ters. If None, no calibration marginalization is used.

• phase_marginalization_kwargs (dict) – Phase marginalization parameters. If None,
no phase marginalization is used.

d_inner_h_complex(theta)
Calculate the complex inner product (d | h(theta)) between the stored data d and a simulated waveform with
given parameters theta.

Parameters
theta (dict) – Parameters at which to evaluate h.

Returns
complex

Return type
Inner product

d_inner_h_complex_multi(theta: DataFrame, num_processes: int = 1)→ ndarray
Calculate the complex inner product (d | h(theta)) between the stored data d and a simulated waveform with
given parameters theta. Works with multiprocessing.

Parameters

• theta (pd.DataFrame) – Parameters at which to evaluate h.

• num_processes (int) – Number of parallel processes to use.

Returns
complex

Return type
Inner product

initialize_time_marginalization(t_lower, t_upper, n_fft=1)
Initialize time marginalization. Time marginalization can be performed via FFT, which is super fast. How-
ever, this limits the time resolution to delta_t = 1/self.data_domain.f_max. In order to allow for a finer time
resolution we compute the time marginalized likelihood n_fft via FFT on a grid of n_fft different time shifts
[0, delta_t, 2*delta_t, . . . , (n_fft-1)*delta_t] and average over the time shifts. The effective time resolution
is thus

delta_t_eff = delta_t / n_fft = 1 / (f_max * n_fft).

Note: Time marginalization in only implemented for uniform time priors.

Parameters

• t_lower (float) – Lower time bound of the uniform time prior.

20.1. dingo package 161

dingo-gw

• t_upper (float) – Upper time bound of the uniform time prior.

• n_fft (int = 1) – Size of grid for FFT for time marginalization.

log_likelihood(theta)

log_likelihood_phase_grid(theta, phases=None)

dingo.gw.likelihood.build_stationary_gaussian_likelihood(metadata, event_dataset=None,
time_marginalization_kwargs=None)

Build a StationaryGaussianLikelihoodBBH object from the metadata.

Parameters

• metadata (dict) – Metadata from stored dingo parameter samples file. Typially accessed
via pd.read_pickle(/path/to/dingo-output.pkl).metadata.

• event_dataset (str = None) – Path to event dataset for caching. If None, don’t cache.

• time_marginalization_kwargs (dict = None) – Forwarded to the likelihood.

Returns
likelihood – likelihood object

Return type
StationaryGaussianGWLikelihood

dingo.gw.likelihood.get_wfg(wfg_kwargs, data_domain, frequency_range=None)
Set up waveform generator from wfg_kwargs. The domain of the wfg is primarily determined by the data do-
main, but a new (larger) frequency range can be specified if this is necessary for the waveforms to be generated
successfully (e.g., for EOB waveforms which require a sufficiently small f_min and sufficiently large f_max).

Parameters

• wfg_kwargs (dict) – Waveform generator parameters.

• data_domain (dingo.gw.domains.Domain) – Domain of event data, with bounds deter-
mined by likelihood integral.

• frequency_range (dict = None) – Frequency range for waveform generator. If None,
that of data domain is used, which corresponds to the bounds of the likelihood integral.
Possible keys:

’f_start’: float
Frequency at which to start the waveform generation. Overrides f_start in meta-
data[“model”][“dataset_settings”][“waveform_generator”].

’f_end’: float
Frequency at which to start the waveform generation.

Returns
wfg – Waveform generator object.

Return type
dingo.gw.waveform_generator.WaveformGenerator

dingo.gw.likelihood.inner_product(a, b, min_idx=0, delta_f=None, psd=None)
Compute the inner product between two complex arrays. There are two modes: either, the data a and b are not
whitened, in which case delta_f and the psd must be provided. Alternatively, if delta_f and psd are not provided,
the data a and b are assumed to be whitened already (i.e., whitened as d -> d * sqrt(4 delta_f / psd)).

Note: sum is only taken along axis 0 (which is assumed to be the frequency axis), while other axes are preserved.
This is e.g. useful when evaluating kappa2 on a phase grid.

162 Chapter 20. dingo

dingo-gw

Parameters

• a (np.ndaarray) – First array with frequency domain data.

• b (np.ndaarray) – Second array with frequency domain data.

• min_idx (int = 0) – Truncation of likelihood integral, index of lowest frequency bin to
consider.

• delta_f (float) – Frequency resolution of the data. If None, a and b are assumed to be
whitened and the inner product is computed without further whitening.

• psd (np.ndarray = None) – PSD of the data. If None, a and b are assumed to be whitened
and the inner product is computed without further whitening.

Returns
inner_product

Return type
float

dingo.gw.likelihood.inner_product_complex(a, b, min_idx=0, delta_f=None, psd=None)
Same as inner product, but without taking the real part. Retaining phase information is useful for the phase-
marginalized likelihood. For further documentation see inner_product function.

dingo.gw.likelihood.main()

dingo.gw.ls_cli module

dingo.gw.ls_cli.determine_dataset_type(file_name)

dingo.gw.ls_cli.ls()

dingo.gw.prior module

class dingo.gw.prior.BBHExtrinsicPriorDict(dictionary=None, filename=None, aligned_spin=False,
conversion_function=None)

Bases: BBHPriorDict

This class is the same as BBHPriorDict except that it does not require mass parameters.

It also contains a method for estimating the standardization parameters.

TODO:

• Add support for zenith/azimuth

• Defaults?

Initialises a Prior set for Binary Black holes

Parameters

• dictionary (dict, optional) – See superclass

• filename (str, optional) – See superclass

• conversion_function (func) – Function to convert between sampled parameters and
constraints. By default this generates many additional parameters, see BBHPrior-
Dict.default_conversion_function

20.1. dingo package 163

dingo-gw

default_conversion_function(sample)
Default parameter conversion function for BBH signals.

This generates: - the parameters passed to source.lal_binary_black_hole - all mass parameters

It does not generate: - component spins - source-frame parameters

Parameters
sample (dict) – Dictionary to convert

Returns
sample – Same as input

Return type
dict

mean_std(keys=[], sample_size=50000, force_numerical=False)
Calculate the mean and standard deviation over the prior.

Parameters

• keys (list(str)) – A list of desired parameter names

• sample_size (int) – For nonanalytic priors, number of samples to use to estimate the
result.

• force_numerical (bool (False)) – Whether to force a numerical estimation of result,
even when analytic results are available (useful for testing)

• deviations. (Returns dictionaries for the means and standard) –

• TODO (Fix for constrained priors. Shouldn't be an issue for extrinsic
parameters.) –

dingo.gw.prior.build_prior_with_defaults(prior_settings: Dict[str, str])
Generate BBHPriorDict based on dictionary of prior settings, allowing for default values.

Parameters

• prior_settings (Dict) – A dictionary containing prior definitions for intrinsic parameters
Allowed values for each parameter are:

– ’default’ to use a default prior

– a string for a custom prior, e.g.,
”Uniform(minimum=10.0, maximum=80.0, name=None, latex_label=None,
unit=None, boundary=None)”

• a (Depending on the particular prior choices the dimensionality of) –

• vary. (parameter sample obtained from the returned GWPriorDict will) –

dingo.gw.prior.split_off_extrinsic_parameters(theta)
Split theta into intrinsic and extrinsic parameters.

Parameters
theta (dict) – BBH parameters. Includes intrinsic parameters to be passed to waveform gen-
erator, and extrinsic parameters for detector projection.

Returns

• theta_intrinsic (dict) – BBH intrinsic parameters.

• theta_extrinsic (dict) – BBH extrinsic parameters.

164 Chapter 20. dingo

dingo-gw

dingo.gw.result module

class dingo.gw.result.Result(**kwargs)
Bases: Result

A dataset class to hold a collection of gravitational-wave parameter samples and perform various operations on
them.

Compared to the base class, this class implements the domain, prior, and likelihood. It also includes a method
for sampling the binary reference phase parameter based on the other parameters and the likelihood.

Attributes:

samples
[pd.Dataframe] Contains parameter samples, as well as (possibly) log_prob, log_likelihood, weights,
log_prior, delta_log_prob_target.

domain
[Domain] The domain of the data (e.g., FrequencyDomain), needed for calculating likelihoods.

prior
[PriorDict] The prior distribution, used for importance sampling.

likelihood
[Likelihood] The Likelihood object, needed for importance sampling.

context
[dict] Context data from which the samples were produced (e.g., strain data, ASDs).

metadata
[dict] Metadata inherited from the Sampler object. This describes the neural networks and sampling
settings used.

event_metadata
[dict] Metadata for the event analyzed, including time, data conditioning, channel, and detector infor-
mation.

log_evidence
[float] Calculated log(evidence) after importance sampling.

log_evidence_std
[float (property)] Standard deviation of the log(evidence)

effective_sample_size, n_eff
[float (property)] Number of effective samples, (sum_i w_i)^2 / sum_i w_i^2

sample_efficiency
[float (property)] Number of effective samples / Number of samples

synthetic_phase_kwargs
[dict] kwargs describing the synthetic phase sampling.

For constructing, provide either file_name, or dictionary containing data and settings entries, or neither.

Parameters

• file_name (str) – HDF5 file containing a dataset

• dictionary (dict) – Contains settings and data entries. The data keys should be the same
as save_keys

20.1. dingo package 165

dingo-gw

• data_keys (list) – Variables that should be saved / loaded. This allows for class to store
additional variables beyond those that are saved. Typically, this list would be provided by
any subclass.

property approximant

property calibration_marginalization_kwargs

dataset_type = 'gw_result'

property f_ref

get_samples_bilby_phase()

Convert the spin angles phi_jl and theta_jn to account for a difference in phase definition compared to Bilby.

Returns
Samples

Return type
pd.DataFrame

property interferometers

property pesummary_prior

The prior in a form suitable for PESummary.

By convention, Dingo stores all times relative to a reference time, typically the trigger time for an event.
The prior returned here corrects for that offset to be consistent with other codes.

property pesummary_samples

Samples in a form suitable for PESummary.

These samples are adjusted to undo certain conventions used internally by Dingo:

• Times are corrected by the reference time t_ref.

• Samples are unweighted, using a fixed random seed for sampling importance

resampling. * The spin angles phi_jl and theta_jn are transformed to account for a difference in
phase definition. * Some columns are dropped: delta_log_prob_target, log_prob

property phase_marginalization_kwargs

sample_synthetic_phase(synthetic_phase_kwargs, inverse: bool = False)
Sample a synthetic phase for the waveform. This is a post-processing step applicable to samples theta in the
full parameter space, except for the phase parameter (i.e., 14D samples). This step adds a phase parameter
to the samples based on likelihood evaluations.

A synthetic phase is sampled as follows.

• Compute and cache the modes for the waveform mu(theta, phase=0) for phase 0, organize them such
that each contribution m transforms as exp(-i * m * phase).

• Compute the likelihood on a phase grid, by computing mu(theta, phase) from the cached modes. In
principle this likelihood is exact, however, it can deviate slightly from the likelihood computed with-
out cached modes for various technical reasons (e.g., slightly different windowing of cached modes
compared to full waveform when transforming TD waveform to FD). These small deviations can be
fully accounted for by importance sampling. Note: when approximation_22_mode=True, the entire
waveform is assumed to transform as exp(2i*phase), in which case the likelihood is only exact if the
waveform is fully dominated by the (2, 2) mode.

166 Chapter 20. dingo

dingo-gw

• Build a synthetic conditional phase distribution based on this grid. We use an interpolated prior dis-
tribution bilby.core.prior.Interped, such that we can sample and also evaluate the log_prob. We add
a constant background with weight self.synthetic_phase_kwargs to the kde to make sure that we keep
a mass-covering property. With this, the importance sampling will yield exact results even when the
synthetic phase conditional is just an approximation.

Besides adding phase samples to self.samples[‘phase’], this method also modifies self.samples[‘log_prob’]
by adding the log_prob of the synthetic phase conditional.

This method modifies self.samples in place.

Parameters

• synthetic_phase_kwargs (dict) –

This should consist of the kwargs
approximation_22_mode (optional) num_processes (optional) n_grid uniform_weight
(optional)

• inverse (bool, default False) – Whether to apply instead the inverse transformation.
This is used prior to calculating the log_prob. In inverse mode, the posterior probability
over phase is calculated for given samples. It is stored in self.samples[‘log_prob’].

property synthetic_phase_kwargs

property t_ref

property time_marginalization_kwargs

update_prior(prior_update)
Update the prior based on a new dict of priors. Use the existing prior for parameters not included in the
new dict.

If class samples have not been importance sampled, then save new sample weights based on the new prior.
If class samples have been importance sampled, then update the weights.

Parameters
prior_update (dict) – Priors to update. This should be of the form {key : prior_str},
where str is a string that can instantiate a prior via PriorDict(prior_update). The prior_update
is provided in this form so that it can be properly saved with the Result and later instantiated.

dingo.gw.temporary_debug_utils module

dingo.gw.temporary_debug_utils.save_training_injection(outname, pm, data, idx=0)
For debugging: extract a training injection. To be used inside train or test loop.

Module contents

dingo.pipe package

Subpackages

dingo.pipe.nodes package

Submodules

20.1. dingo package 167

dingo-gw

dingo.pipe.nodes.generation_node module

class dingo.pipe.nodes.generation_node.GenerationNode(inputs, importance_sampling=False,
**kwargs)

Bases: GenerationNode

Node for data generation jobs

Parameters:

inputs: bilby_pipe.main.MainInput
The user-defined inputs

trigger_time: float
The trigger time to use in generating analysis data

idx: int
The index of the data-generation job, used to label data products

dag: bilby_pipe.dag.Dag
The dag structure

parent: bilby_pipe.job_creation.node.Node (optional)
Any job to set as the parent to this job - used to enforce dependencies

property event_data_file

property executable

property job_name

setup_arguments(**kwargs)

dingo.pipe.nodes.importance_sampling_node module

class dingo.pipe.nodes.importance_sampling_node.ImportanceSamplingNode(inputs, sampling_node,
generation_node,
parallel_idx, dag)

Bases: AnalysisNode

property executable

property result_file

dingo.pipe.nodes.merge_node module

class dingo.pipe.nodes.merge_node.MergeNode(**kwargs)
Bases: MergeNode

property executable

property result_file

168 Chapter 20. dingo

dingo-gw

dingo.pipe.nodes.pe_summary_node module

class dingo.pipe.nodes.pe_summary_node.PESummaryNode(inputs, merged_node_list,
generation_node_list, dag)

Bases: PESummaryNode

dingo.pipe.nodes.plot_node module

class dingo.pipe.nodes.plot_node.PlotNode(inputs, merged_node, dag)
Bases: PlotNode

property executable

dingo.pipe.nodes.sampling_node module

class dingo.pipe.nodes.sampling_node.SamplingNode(inputs, generation_node, dag)
Bases: AnalysisNode

property executable

property result_file

property samples_file

Module contents

Submodules

dingo.pipe.dag_creator module

dingo.pipe.dag_creator.generate_dag(inputs, model_args)

dingo.pipe.dag_creator.get_parallel_list(inputs)

dingo.pipe.dag_creator.get_trigger_time_list(inputs)
Returns a list of GPS trigger times for each data segment

dingo.pipe.data_generation module

class dingo.pipe.data_generation.DataGenerationInput(args, unknown_args, create_data=True)
Bases: DataGenerationInput

property event_data_file

property importance_sampling_updates

save_hdf5()

Save frequency-domain strain and ASDs as DingoDataset HDF5 format.

20.1. dingo package 169

dingo-gw

dingo.pipe.data_generation.create_generation_parser()

Data generation parser creation

dingo.pipe.data_generation.main()

Data generation main logic

dingo.pipe.default_settings module

dingo.pipe.dingo_result module

dingo.pipe.dingo_result.main()

dingo.pipe.importance_sampling module

Script to importance sample based on Dingo samples. Based on bilby_pipe data analysis script.

class dingo.pipe.importance_sampling.ImportanceSamplingInput(args, unknown_args)
Bases: Input

property calibration_marginalization_kwargs

property importance_sampling_settings

property priors

Read in and compose the prior at run-time

run_sampler()

dingo.pipe.importance_sampling.create_sampling_parser()

Data analysis parser creation

dingo.pipe.importance_sampling.main()

Data analysis main logic

dingo.pipe.main module

class dingo.pipe.main.MainInput(args, unknown_args, importance_sampling_updates)
Bases: MainInput

property priors

Read in and compose the prior at run-time

property request_cpus_importance_sampling

dingo.pipe.main.fill_in_arguments_from_model(args)

dingo.pipe.main.main()

dingo.pipe.main.write_complete_config_file(parser, args, inputs, input_cls=<class
'dingo.pipe.main.MainInput'>)

170 Chapter 20. dingo

dingo-gw

dingo.pipe.parser module

class dingo.pipe.parser.StoreBoolean(option_strings, dest, nargs=None, const=None, default=None,
type=None, choices=None, required=False, help=None,
metavar=None)

Bases: Action

argparse class for robust handling of booleans with configargparse

When using configargparse, if the argument is setup with action=”store_true”, but the default is set to True, then
there is no way, in the config file to switch the parameter off. To resolve this, this class handles the boolean
properly.

dingo.pipe.parser.create_parser(top_level=True)
Creates the BilbyArgParser for dingo_pipe

Parameters
top_level – If true, parser is to be used at the top-level with requirement checking etc., else it
is an internal call and will be ignored.

Returns
parser – Argument parser

Return type
BilbyArgParser instance

dingo.pipe.plot module

dingo.pipe.plot.create_parser()

Generate a parser for the plot script

Returns
parser – A parser with all the default options already added

Return type
BilbyArgParser

dingo.pipe.plot.main()

dingo.pipe.sampling module

Script to sample from a Dingo model. Based on bilby_pipe data analysis script.

class dingo.pipe.sampling.SamplingInput(args, unknown_args)
Bases: Input

property density_recovery_settings

run_sampler()

dingo.pipe.sampling.create_sampling_parser()

Data analysis parser creation

dingo.pipe.sampling.main()

Data analysis main logic

20.1. dingo package 171

dingo-gw

dingo.pipe.utils module

Module contents

20.1.2 Module contents

172 Chapter 20. dingo

CHAPTER

TWENTYONE

REFERENCES

Dingo is based on a series of papers developing neural posterior estimation for gravitational waves, starting from proof
of concept [1], to inclusion of all 15 parameters and analysis of real data [2], noise conditioning and full amortization
[3], and group-equivariant NPE [4]. Dingo results are augmented with importance sampling in [5]. Finally, training
with forecasted noise (needed for training prior to an observing run) is described in [6].

If you use Dingo in your work, we ask that you please cite at least [3].

Contributors to the code are listed in AUTHORS.md. We thank Vivien Raymond and Rory Smith for acting as LIGO-
Virgo-KAGRA (LVK) code reviewers. Dingo makes use of many LVK software tools, including Bilby, bilby_pipe,
and LALSimulation, as well as third party tools such as PyTorch and nflows.

173

https://github.com/dingo-gw/dingo/blob/main/AUTHORS.md
https://lscsoft.docs.ligo.org/bilby/
https://lscsoft.docs.ligo.org/bilby_pipe/master/index.html
https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/
https://pytorch.org
https://github.com/bayesiains/nflows

dingo-gw

174 Chapter 21. References

CHAPTER

TWENTYTWO

CONTACT

For questions or comments please contact Maximilian Dax or Stephen Green.

175

mailto:maximilian.dax@tuebingen.mpg.de
mailto:stephen.green2@nottingham.ac.uk

dingo-gw

176 Chapter 22. Contact

CHAPTER

TWENTYTHREE

INDICES AND TABLES

• genindex

• modindex

• search

177

dingo-gw

178 Chapter 23. Indices and tables

BIBLIOGRAPHY

[1] Stephen R. Green, Christine Simpson, and Jonathan Gair. Gravitational-wave parameter estima-
tion with autoregressive neural network flows. Phys. Rev. D, 102:104057, 2020. arXiv:2002.07656,
doi:10.1103/PhysRevD.102.104057.

[2] Stephen R. Green and Jonathan Gair. Complete parameter inference for GW150914 using deep learning. Mach.
Learn. Sci. Tech., 2(3):03LT01, 2021. arXiv:2008.03312, doi:10.1088/2632-2153/abfaed.

[3] Maximilian Dax, Stephen R. Green, Jonathan Gair, Jakob H. Macke, Alessandra Buonanno, and Bern-
hard Schölkopf. Real-Time Gravitational Wave Science with Neural Posterior Estimation. Phys. Rev. Lett.,
127(24):241103, 2021. arXiv:2106.12594, doi:10.1103/PhysRevLett.127.241103.

[4] Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Deistler, Bernhard Schölkopf, and Jakob H. Macke.
Group equivariant neural posterior estimation. International Conference on Learning Representations, 2022.
arXiv:2111.13139.

[5] Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jonas Wildberger, Jakob H. Macke, Alessan-
dra Buonanno, and Bernhard Schölkopf. Neural Importance Sampling for Rapid and Reliable Gravitational-Wave
Inference. 10 2022. arXiv:2210.05686.

[6] Jonas Wildberger, Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jakob H. Macke, Alessan-
dra Buonanno, and Bernhard Schölkopf. Adapting to noise distribution shifts in flow-based gravitational-wave
inference. 11 2022. arXiv:2211.08801.

179

https://arxiv.org/abs/2002.07656
https://doi.org/10.1103/PhysRevD.102.104057
https://arxiv.org/abs/2008.03312
https://doi.org/10.1088/2632-2153/abfaed
https://arxiv.org/abs/2106.12594
https://doi.org/10.1103/PhysRevLett.127.241103
https://arxiv.org/abs/2111.13139
https://arxiv.org/abs/2210.05686
https://arxiv.org/abs/2211.08801

dingo-gw

180 Bibliography

PYTHON MODULE INDEX

d
dingo, 172
dingo.asimov, 91
dingo.core, 116
dingo.core.dataset, 109
dingo.core.density, 93
dingo.core.density.interpolation, 91
dingo.core.density.nde_settings, 93
dingo.core.density.unconditional_density_estimation,

93
dingo.core.likelihood, 109
dingo.core.models, 96
dingo.core.models.posterior_model, 94
dingo.core.multiprocessing, 110
dingo.core.nn, 103
dingo.core.nn.enets, 96
dingo.core.nn.nsf, 100
dingo.core.result, 110
dingo.core.samplers, 113
dingo.core.transforms, 116
dingo.core.utils, 109
dingo.core.utils.condor_utils, 103
dingo.core.utils.gnpeutils, 104
dingo.core.utils.logging_utils, 104
dingo.core.utils.misc, 104
dingo.core.utils.plotting, 104
dingo.core.utils.pt_to_hdf5, 105
dingo.core.utils.torchutils, 105
dingo.core.utils.trainutils, 107
dingo.gw, 167
dingo.gw.conversion, 118
dingo.gw.conversion.spin_conversion, 116
dingo.gw.data, 119
dingo.gw.data.data_download, 118
dingo.gw.data.data_preparation, 118
dingo.gw.data.event_dataset, 119
dingo.gw.dataset, 123
dingo.gw.dataset.generate_dataset, 119
dingo.gw.dataset.generate_dataset_dag, 121
dingo.gw.dataset.utils, 121
dingo.gw.dataset.waveform_dataset, 121
dingo.gw.domains, 152

dingo.gw.download_strain_data, 156
dingo.gw.gwutils, 157
dingo.gw.importance_sampling, 123
dingo.gw.importance_sampling.diagnostics, 123
dingo.gw.importance_sampling.importance_weights,

123
dingo.gw.inference, 126
dingo.gw.inference.gw_samplers, 123
dingo.gw.inference.inference_pipeline, 125
dingo.gw.inference.visualization, 126
dingo.gw.injection, 158
dingo.gw.likelihood, 160
dingo.gw.ls_cli, 163
dingo.gw.noise, 132
dingo.gw.noise.asd_dataset, 129
dingo.gw.noise.asd_estimation, 130
dingo.gw.noise.generate_dataset, 130
dingo.gw.noise.generate_dataset_dag, 131
dingo.gw.noise.synthetic, 129
dingo.gw.noise.synthetic.asd_parameterization,

126
dingo.gw.noise.synthetic.asd_sampling, 128
dingo.gw.noise.synthetic.generate_dataset,

128
dingo.gw.noise.synthetic.utils, 129
dingo.gw.noise.utils, 131
dingo.gw.prior, 163
dingo.gw.result, 165
dingo.gw.SVD, 150
dingo.gw.temporary_debug_utils, 167
dingo.gw.training, 135
dingo.gw.training.train_builders, 132
dingo.gw.training.train_pipeline, 133
dingo.gw.training.train_pipeline_condor, 135
dingo.gw.training.utils, 135
dingo.gw.transforms, 141
dingo.gw.transforms.detector_transforms, 135
dingo.gw.transforms.general_transforms, 137
dingo.gw.transforms.gnpe_transforms, 137
dingo.gw.transforms.inference_transforms, 139
dingo.gw.transforms.noise_transforms, 139
dingo.gw.transforms.parameter_transforms, 140

181

dingo-gw

dingo.gw.waveform_generator, 150
dingo.gw.waveform_generator.frame_utils, 141
dingo.gw.waveform_generator.waveform_generator,

141
dingo.gw.waveform_generator.wfg_utils, 148
dingo.pipe, 172
dingo.pipe.dag_creator, 169
dingo.pipe.data_generation, 169
dingo.pipe.default_settings, 170
dingo.pipe.dingo_result, 170
dingo.pipe.importance_sampling, 170
dingo.pipe.main, 170
dingo.pipe.nodes, 169
dingo.pipe.nodes.generation_node, 168
dingo.pipe.nodes.importance_sampling_node,

168
dingo.pipe.nodes.merge_node, 168
dingo.pipe.nodes.pe_summary_node, 169
dingo.pipe.nodes.plot_node, 169
dingo.pipe.nodes.sampling_node, 169
dingo.pipe.parser, 171
dingo.pipe.plot, 171
dingo.pipe.sampling, 171
dingo.pipe.utils, 172

182 Python Module Index

INDEX

A
add_phase() (dingo.gw.domains.FrequencyDomain

static method), 32, 152
AddWhiteNoiseComplex (class in dingo.gw.transforms),

51
AddWhiteNoiseComplex (class in

dingo.gw.transforms.noise_transforms), 139
analyze_event() (in module

dingo.gw.inference.inference_pipeline), 125
append_stage() (in module dingo.gw.training.utils),

135
apply_func_with_multiprocessing() (in module

dingo.core.multiprocessing), 110
ApplyCalibrationUncertainty (class in

dingo.gw.transforms.detector_transforms),
135

ApplySVD (class in dingo.gw.SVD), 150
approximant (dingo.gw.result.Result property), 166
asd (dingo.gw.injection.GWSignal property), 158
ASDDataset (class in dingo.gw.noise.asd_dataset), 129
autocomplete_model_kwargs_nsf() (in module

dingo.core.nn.nsf), 100
AvgTracker (class in dingo.core.utils.trainutils), 107

B
base_metadata (dingo.core.result.Result property), 111
BBHExtrinsicPriorDict (class in dingo.gw.prior), 163
build_dataset() (in module

dingo.gw.training.train_builders), 132
build_domain() (in module dingo.gw.domains), 155
build_domain_from_model_metadata() (in module

dingo.gw.domains), 156
build_prior_with_defaults() (in module

dingo.gw.prior), 164
build_stationary_gaussian_likelihood() (in

module dingo.gw.likelihood), 162
build_svd_cli() (in module dingo.gw.dataset.utils),

121
build_svd_for_embedding_network() (in module

dingo.gw.training.train_builders), 132
build_train_and_test_loaders() (in module

dingo.core.utils.torchutils), 105

C
calibration_marginalization_kwargs

(dingo.gw.injection.GWSignal property),
158

calibration_marginalization_kwargs
(dingo.gw.result.Result property), 166

calibration_marginalization_kwargs
(dingo.pipe.importance_sampling.ImportanceSamplingInput
property), 170

cartesian_spins() (in module
dingo.gw.conversion.spin_conversion), 116

CATALOGS (in module dingo.gw.noise.utils), 131
change_spin_conversion_phase() (in module

dingo.gw.conversion.spin_conversion), 117
check_directory_exists_and_if_not_mkdir() (in

module dingo.core.utils.logging_utils), 104
check_equal_dict_of_arrays() (in module

dingo.core.result), 113
component_masses() (in module

dingo.gw.conversion.spin_conversion), 117
compress() (dingo.gw.SVD.SVDBasis method), 151
compute_test_mismatches()

(dingo.gw.SVD.SVDBasis method), 151
configure_runs() (in module

dingo.gw.dataset.generate_dataset_dag),
121

constraint_parameter_keys
(dingo.core.result.Result property), 111

context (dingo.core.samplers.GNPESampler property),
77

context (dingo.core.samplers.Sampler attribute), 115
context (dingo.core.samplers.Sampler property), 115
context (dingo.gw.inference.gw_samplers.GWSampler

property), 70
convert_J_to_L0_frame() (in module

dingo.gw.waveform_generator.frame_utils),
141

copy_logfiles() (in module
dingo.core.utils.condor_utils), 103

copy_logfiles() (in module
dingo.gw.training.train_pipeline_condor),
135

183

dingo-gw

copyfile() (in module dingo.core.utils.condor_utils),
103

copyfile() (in module dingo.core.utils.trainutils), 108
copyfile() (in module

dingo.gw.training.train_pipeline_condor),
135

CopyToExtrinsicParameters (class in
dingo.gw.transforms.inference_transforms),
139

create_args_string() (in module
dingo.gw.dataset.generate_dataset_dag),
121

create_args_string() (in module
dingo.gw.noise.generate_dataset_dag), 131

create_base_transform() (in module
dingo.core.nn.nsf), 101

create_dag() (in module
dingo.gw.dataset.generate_dataset_dag),
121

create_dag() (in module
dingo.gw.noise.generate_dataset_dag), 131

create_enet_with_projection_layer_and_dense_resnet()
(in module dingo.core.nn.enets), 99

create_generation_parser() (in module
dingo.pipe.data_generation), 169

create_linear_transform() (in module
dingo.core.nn.nsf), 102

create_nsf_model() (in module dingo.core.nn.nsf),
102

create_nsf_with_rb_projection_embedding_net()
(in module dingo.core.nn.nsf), 102

create_nsf_wrapped() (in module dingo.core.nn.nsf),
102

create_parser() (in module dingo.pipe.parser), 171
create_parser() (in module dingo.pipe.plot), 171
create_sampling_parser() (in module

dingo.pipe.importance_sampling), 170
create_sampling_parser() (in module

dingo.pipe.sampling), 171
create_submission_file() (in module

dingo.core.utils.condor_utils), 103
create_submission_file() (in module

dingo.gw.training.train_pipeline_condor),
135

create_submission_file_and_submit_job() (in
module dingo.core.utils.condor_utils), 103

create_transform() (in module dingo.core.nn.nsf),
103

curve_fit() (in module
dingo.gw.noise.synthetic.asd_parameterization),
126

D
d_inner_h_complex()

(dingo.gw.likelihood.StationaryGaussianGWLikelihood
method), 161

d_inner_h_complex_multi()
(dingo.gw.likelihood.StationaryGaussianGWLikelihood
method), 161

data_to_domain() (in module
dingo.gw.data.data_preparation), 118

DataGenerationInput (class in
dingo.pipe.data_generation), 169

dataset_type (dingo.core.dataset.DingoDataset
attribute), 109

dataset_type (dingo.core.result.Result attribute), 111
dataset_type (dingo.gw.data.event_dataset.EventDataset

attribute), 119
dataset_type (dingo.gw.dataset.waveform_dataset.WaveformDataset

attribute), 122
dataset_type (dingo.gw.noise.asd_dataset.ASDDataset

attribute), 129
dataset_type (dingo.gw.result.Result attribute), 166
dataset_type (dingo.gw.SVD.SVDBasis attribute), 151
decompress() (dingo.gw.SVD.SVDBasis method), 151
default_conversion_function()

(dingo.gw.prior.BBHExtrinsicPriorDict
method), 163

delta_f (dingo.gw.domains.FrequencyDomain prop-
erty), 32, 153

delta_t (dingo.gw.domains.TimeDomain property), 155
DenseResidualNet (class in dingo.core.nn.enets), 96
density_recovery_settings

(dingo.pipe.sampling.SamplingInput prop-
erty), 171

determine_dataset_type() (in module
dingo.gw.ls_cli), 163

dingo
module, 172

dingo.asimov
module, 91

dingo.core
module, 116

dingo.core.dataset
module, 109

dingo.core.density
module, 93

dingo.core.density.interpolation
module, 91

dingo.core.density.nde_settings
module, 93

dingo.core.density.unconditional_density_estimation
module, 93

dingo.core.likelihood
module, 109

dingo.core.models
module, 96

dingo.core.models.posterior_model

184 Index

dingo-gw

module, 94
dingo.core.multiprocessing

module, 110
dingo.core.nn

module, 103
dingo.core.nn.enets

module, 96
dingo.core.nn.nsf

module, 100
dingo.core.result

module, 110
dingo.core.samplers

module, 113
dingo.core.transforms

module, 116
dingo.core.utils

module, 109
dingo.core.utils.condor_utils

module, 103
dingo.core.utils.gnpeutils

module, 104
dingo.core.utils.logging_utils

module, 104
dingo.core.utils.misc

module, 104
dingo.core.utils.plotting

module, 104
dingo.core.utils.pt_to_hdf5

module, 105
dingo.core.utils.torchutils

module, 105
dingo.core.utils.trainutils

module, 107
dingo.gw

module, 167
dingo.gw.conversion

module, 118
dingo.gw.conversion.spin_conversion

module, 116
dingo.gw.data

module, 119
dingo.gw.data.data_download

module, 118
dingo.gw.data.data_preparation

module, 118
dingo.gw.data.event_dataset

module, 119
dingo.gw.dataset

module, 123
dingo.gw.dataset.generate_dataset

module, 119
dingo.gw.dataset.generate_dataset_dag

module, 121
dingo.gw.dataset.utils

module, 121
dingo.gw.dataset.waveform_dataset

module, 121
dingo.gw.domains

module, 152
dingo.gw.download_strain_data

module, 156
dingo.gw.gwutils

module, 157
dingo.gw.importance_sampling

module, 123
dingo.gw.importance_sampling.diagnostics

module, 123
dingo.gw.importance_sampling.importance_weights

module, 123
dingo.gw.inference

module, 126
dingo.gw.inference.gw_samplers

module, 123
dingo.gw.inference.inference_pipeline

module, 125
dingo.gw.inference.visualization

module, 126
dingo.gw.injection

module, 158
dingo.gw.likelihood

module, 160
dingo.gw.ls_cli

module, 163
dingo.gw.noise

module, 132
dingo.gw.noise.asd_dataset

module, 129
dingo.gw.noise.asd_estimation

module, 130
dingo.gw.noise.generate_dataset

module, 130
dingo.gw.noise.generate_dataset_dag

module, 131
dingo.gw.noise.synthetic

module, 129
dingo.gw.noise.synthetic.asd_parameterization

module, 126
dingo.gw.noise.synthetic.asd_sampling

module, 128
dingo.gw.noise.synthetic.generate_dataset

module, 128
dingo.gw.noise.synthetic.utils

module, 129
dingo.gw.noise.utils

module, 131
dingo.gw.prior

module, 163
dingo.gw.result

Index 185

dingo-gw

module, 165
dingo.gw.SVD

module, 150
dingo.gw.temporary_debug_utils

module, 167
dingo.gw.training

module, 135
dingo.gw.training.train_builders

module, 132
dingo.gw.training.train_pipeline

module, 133
dingo.gw.training.train_pipeline_condor

module, 135
dingo.gw.training.utils

module, 135
dingo.gw.transforms

module, 141
dingo.gw.transforms.detector_transforms

module, 135
dingo.gw.transforms.general_transforms

module, 137
dingo.gw.transforms.gnpe_transforms

module, 137
dingo.gw.transforms.inference_transforms

module, 139
dingo.gw.transforms.noise_transforms

module, 139
dingo.gw.transforms.parameter_transforms

module, 140
dingo.gw.waveform_generator

module, 150
dingo.gw.waveform_generator.frame_utils

module, 141
dingo.gw.waveform_generator.waveform_generator

module, 141
dingo.gw.waveform_generator.wfg_utils

module, 148
dingo.pipe

module, 172
dingo.pipe.dag_creator

module, 169
dingo.pipe.data_generation

module, 169
dingo.pipe.default_settings

module, 170
dingo.pipe.dingo_result

module, 170
dingo.pipe.importance_sampling

module, 170
dingo.pipe.main

module, 170
dingo.pipe.nodes

module, 169
dingo.pipe.nodes.generation_node

module, 168
dingo.pipe.nodes.importance_sampling_node

module, 168
dingo.pipe.nodes.merge_node

module, 168
dingo.pipe.nodes.pe_summary_node

module, 169
dingo.pipe.nodes.plot_node

module, 169
dingo.pipe.nodes.sampling_node

module, 169
dingo.pipe.parser

module, 171
dingo.pipe.plot

module, 171
dingo.pipe.sampling

module, 171
dingo.pipe.utils

module, 172
DingoDataset (class in dingo.core.dataset), 109
Domain (class in dingo.gw.domains), 152
domain_dict (dingo.gw.domains.Domain property), 152
domain_dict (dingo.gw.domains.FrequencyDomain

property), 32, 153
domain_dict (dingo.gw.domains.TimeDomain prop-

erty), 155
download_and_estimate_cli() (in module

dingo.gw.noise.asd_estimation), 130
download_and_estimate_psds() (in module

dingo.gw.noise.asd_estimation), 130
download_event_data_in_FD() (in module

dingo.gw.download_strain_data), 156
download_psd() (in module

dingo.gw.data.data_download), 118
download_raw_data() (in module

dingo.gw.data.data_download), 118
download_strain_data_in_FD() (in module

dingo.gw.download_strain_data), 156
duration (dingo.gw.domains.Domain property), 152
duration (dingo.gw.domains.FrequencyDomain prop-

erty), 32, 153
duration (dingo.gw.domains.TimeDomain property),

155

E
effective_sample_size (dingo.core.result.Result

property), 111
estimate_single_psd() (in module

dingo.gw.download_strain_data), 157
event_data_file (dingo.pipe.data_generation.DataGenerationInput

property), 169
event_data_file (dingo.pipe.nodes.generation_node.GenerationNode

property), 168

186 Index

dingo-gw

event_metadata (dingo.core.samplers.GNPESampler
property), 77

event_metadata (dingo.core.samplers.Sampler at-
tribute), 115

event_metadata (dingo.core.samplers.Sampler prop-
erty), 115

event_metadata (dingo.gw.inference.gw_samplers.GWSampler
property), 70

EventDataset (class in dingo.gw.data.event_dataset),
119

executable (dingo.pipe.nodes.generation_node.GenerationNode
property), 168

executable (dingo.pipe.nodes.importance_sampling_node.ImportanceSamplingNode
property), 168

executable (dingo.pipe.nodes.merge_node.MergeNode
property), 168

executable (dingo.pipe.nodes.plot_node.PlotNode
property), 169

executable (dingo.pipe.nodes.sampling_node.SamplingNode
property), 169

ExpandStrain (class in
dingo.gw.transforms.inference_transforms),
139

F
f_max (dingo.gw.domains.Domain property), 152
f_max (dingo.gw.domains.FrequencyDomain property),

32, 153
f_max (dingo.gw.domains.TimeDomain property), 155
f_min (dingo.gw.domains.FrequencyDomain property),

33, 153
f_ref (dingo.gw.result.Result property), 166
fill_in_arguments_from_model() (in module

dingo.pipe.main), 170
fit() (dingo.gw.noise.synthetic.asd_sampling.KDE

method), 128
fit_broadband_noise() (in module

dingo.gw.noise.synthetic.asd_parameterization),
126

fit_spectral() (in module
dingo.gw.noise.synthetic.asd_parameterization),
127

fix_random_seeds() (in module
dingo.core.utils.torchutils), 105

fixed_parameter_keys (dingo.core.result.Result prop-
erty), 111

FlowWrapper (class in dingo.core.nn.nsf), 100
forward() (dingo.core.nn.enets.DenseResidualNet

method), 97
forward() (dingo.core.nn.enets.LinearProjectionRB

method), 98
forward() (dingo.core.nn.enets.ModuleMerger

method), 98

forward() (dingo.core.nn.nsf.FlowWrapper method),
100

forward_pass_with_unpacked_tuple() (in module
dingo.core.utils.torchutils), 105

freeze() (in module dingo.core.result), 113
frequency_mask (dingo.gw.domains.FrequencyDomain

property), 33, 153
frequency_mask_length

(dingo.gw.domains.FrequencyDomain prop-
erty), 33, 153

FrequencyDomain (class in dingo.gw.domains), 32, 152
from_dictionary() (dingo.core.dataset.DingoDataset

method), 109
from_dictionary() (dingo.gw.SVD.SVDBasis

method), 151
from_file() (dingo.core.dataset.DingoDataset

method), 109
from_file() (dingo.gw.SVD.SVDBasis method), 151
from_posterior_model_metadata()

(dingo.gw.injection.Injection class method),
71, 159

G
generate_basis() (dingo.gw.SVD.SVDBasis method),

151
generate_cornerplot() (in module

dingo.gw.inference.visualization), 126
generate_dag() (in module dingo.pipe.dag_creator),

169
generate_dataset() (in module

dingo.gw.dataset.generate_dataset), 45,
119

generate_dataset() (in module
dingo.gw.noise.generate_dataset), 130

generate_dataset() (in module
dingo.gw.noise.synthetic.generate_dataset),
128

generate_FD_modes_LO()
(dingo.gw.waveform_generator.waveform_generator.NewInterfaceWaveformGenerator
method), 142

generate_FD_modes_LO()
(dingo.gw.waveform_generator.waveform_generator.WaveformGenerator
method), 145

generate_FD_modes_LO()
(dingo.gw.waveform_generator.WaveformGenerator
method), 37

generate_FD_waveform()
(dingo.gw.waveform_generator.waveform_generator.NewInterfaceWaveformGenerator
method), 142

generate_FD_waveform()
(dingo.gw.waveform_generator.waveform_generator.WaveformGenerator
method), 145

generate_FD_waveform()
(dingo.gw.waveform_generator.WaveformGenerator

Index 187

dingo-gw

method), 37
generate_hplus_hcross()

(dingo.gw.waveform_generator.waveform_generator.WaveformGenerator
method), 146

generate_hplus_hcross()
(dingo.gw.waveform_generator.WaveformGenerator
method), 38

generate_hplus_hcross_m()
(dingo.gw.waveform_generator.waveform_generator.NewInterfaceWaveformGenerator
method), 143

generate_hplus_hcross_m()
(dingo.gw.waveform_generator.waveform_generator.WaveformGenerator
method), 146

generate_hplus_hcross_m()
(dingo.gw.waveform_generator.WaveformGenerator
method), 39

generate_parameters_and_polarizations() (in
module dingo.gw.dataset.generate_dataset),
120

generate_TD_modes_L0()
(dingo.gw.waveform_generator.waveform_generator.NewInterfaceWaveformGenerator
method), 142

generate_TD_modes_L0()
(dingo.gw.waveform_generator.waveform_generator.WaveformGenerator
method), 145

generate_TD_modes_L0()
(dingo.gw.waveform_generator.WaveformGenerator
method), 37

generate_TD_modes_L0_conditioned_extra_time()
(dingo.gw.waveform_generator.waveform_generator.NewInterfaceWaveformGenerator
method), 142

generate_TD_waveform()
(dingo.gw.waveform_generator.waveform_generator.NewInterfaceWaveformGenerator
method), 143

generate_TD_waveform()
(dingo.gw.waveform_generator.waveform_generator.WaveformGenerator
method), 146

generate_TD_waveform()
(dingo.gw.waveform_generator.WaveformGenerator
method), 38

generate_waveforms_parallel() (in module
dingo.gw.waveform_generator.waveform_generator),
148

generate_waveforms_task_func() (in module
dingo.gw.waveform_generator.waveform_generator),
148

GenerationNode (class in
dingo.pipe.nodes.generation_node), 168

get_activation_function_from_string() (in mod-
ule dingo.core.utils.torchutils), 105

get_avg() (dingo.core.utils.trainutils.AvgTracker
method), 107

get_avg() (dingo.core.utils.trainutils.LossInfo method),
107

get_default_nde_settings_3d() (in module
dingo.core.density.nde_settings), 93

get_event_data() (in module
dingo.gw.inference.inference_pipeline), 125

get_event_data_and_domain() (in module
dingo.gw.data.data_preparation), 118

get_event_gps_times() (in module
dingo.gw.noise.utils), 131

get_extrinsic_prior_dict() (in module
dingo.gw.gwutils), 157

get_index_for_elem() (in module
dingo.gw.noise.synthetic.utils), 129

get_JL0_euler_angles() (in module
dingo.gw.waveform_generator.frame_utils),
141

get_lr() (in module dingo.core.utils.torchutils), 106
get_mismatch() (in module dingo.gw.gwutils), 157
get_model_callable() (in module

dingo.core.models.posterior_model), 96
get_number_of_model_parameters() (in module

dingo.core.utils.torchutils), 106
get_optimizer_from_kwargs() (in module

dingo.core.utils.torchutils), 106
get_parallel_list() (in module

dingo.pipe.dag_creator), 169
get_polarizations_from_fd_modes_m() (in module

dingo.gw.waveform_generator.wfg_utils), 148
get_rescaling_params() (in module

dingo.gw.noise.synthetic.asd_sampling),
128

get_sample_frequencies_astype()
(dingo.gw.domains.FrequencyDomain
method), 33, 153

get_samples_bilby_phase() (dingo.gw.result.Result
method), 80, 166

get_scheduler_from_kwargs() (in module
dingo.core.utils.torchutils), 106

get_standardization_dict() (in module
dingo.gw.gwutils), 157

get_starting_frequency_for_SEOBRNRv5_conditioning()
(in module dingo.gw.waveform_generator.wfg_utils),
148

get_tapering_window_for_complex_time_series()
(in module dingo.gw.waveform_generator.wfg_utils),
149

get_time_segments() (in module
dingo.gw.noise.utils), 131

get_trigger_time_list() (in module
dingo.pipe.dag_creator), 169

get_version() (in module dingo.core.utils.misc), 104
get_wfg() (in module dingo.gw.likelihood), 162
get_window() (in module dingo.gw.gwutils), 158
get_window_factor() (in module dingo.gw.gwutils),

158

188 Index

dingo-gw

GetDetectorTimes (class in dingo.gw.transforms), 50
GetDetectorTimes (class in

dingo.gw.transforms.detector_transforms),
136

GetItem (class in dingo.core.transforms), 116
gnpe_proxy_parameters

(dingo.core.samplers.GNPESampler prop-
erty), 114

GNPEBase (class in dingo.gw.transforms.gnpe_transforms),
137

GNPECoalescenceTimes (class in dingo.gw.transforms),
50

GNPECoalescenceTimes (class in
dingo.gw.transforms.gnpe_transforms), 138

GNPESampler (class in dingo.core.samplers), 76, 113
gps_info (dingo.gw.noise.asd_dataset.ASDDataset

property), 130
GWSampler (class in dingo.gw.inference.gw_samplers),

69, 123
GWSamplerGNPE (class in

dingo.gw.inference.gw_samplers), 124
GWSamplerMixin (class in

dingo.gw.inference.gw_samplers), 125
GWSignal (class in dingo.gw.injection), 158

I
importance_sample() (dingo.core.result.Result

method), 111
importance_sample() (dingo.gw.result.Result

method), 80
importance_sampling_settings

(dingo.pipe.importance_sampling.ImportanceSamplingInput
property), 170

importance_sampling_updates
(dingo.pipe.data_generation.DataGenerationInput
property), 169

ImportanceSamplingInput (class in
dingo.pipe.importance_sampling), 170

ImportanceSamplingNode (class in
dingo.pipe.nodes.importance_sampling_node),
168

inference_parameters (dingo.core.samplers.Sampler
attribute), 115

init_layers() (dingo.core.nn.enets.LinearProjectionRB
method), 98

init_sampler (dingo.core.samplers.GNPESampler
property), 114

initialize_decompression()
(dingo.gw.dataset.waveform_dataset.WaveformDataset
method), 122

initialize_decompression()
(dingo.gw.dataset.WaveformDataset method),
42

initialize_model() (dingo.core.models.posterior_model.PosteriorModel
method), 94

initialize_optimizer_and_scheduler()
(dingo.core.models.posterior_model.PosteriorModel
method), 94

initialize_stage() (in module
dingo.gw.training.train_pipeline), 133

initialize_time_marginalization()
(dingo.gw.likelihood.StationaryGaussianGWLikelihood
method), 161

Injection (class in dingo.gw.injection), 71, 159
injection() (dingo.gw.injection.Injection method), 71,

160
injection_parameters (dingo.core.result.Result prop-

erty), 111
inner_product() (in module dingo.gw.likelihood), 162
inner_product_complex() (in module

dingo.gw.likelihood), 163
input_dim (dingo.core.nn.enets.LinearProjectionRB

property), 98
interferometers (dingo.gw.result.Result property),

166
interpolated_log_prob() (in module

dingo.core.density.interpolation), 91
interpolated_log_prob_multi() (in module

dingo.core.density.interpolation), 91
interpolated_sample_and_log_prob() (in module

dingo.core.density.interpolation), 92
interpolated_sample_and_log_prob_multi() (in

module dingo.core.density.interpolation), 92
inverse() (dingo.gw.transforms.gnpe_transforms.GNPEBase

method), 137
inverse() (dingo.gw.transforms.parameter_transforms.StandardizeParameters

method), 141
IterationTracker (class in dingo.core.utils.gnpeutils),

104

J
job_name (dingo.pipe.nodes.generation_node.GenerationNode

property), 168

K
KDE (class in dingo.gw.noise.synthetic.asd_sampling),

128

L
length_info (dingo.gw.noise.asd_dataset.ASDDataset

property), 130
Likelihood (class in dingo.core.likelihood), 109
limits_exceeded() (dingo.core.utils.trainutils.RuntimeLimits

method), 107
LinearProjectionRB (class in dingo.core.nn.enets), 97
linked_list_modes_to_dict_modes() (in module

dingo.gw.waveform_generator.wfg_utils), 149

Index 189

dingo-gw

load_model() (dingo.core.models.posterior_model.PosteriorModel
method), 95

load_raw_data() (in module
dingo.gw.data.data_preparation), 118

load_ref_samples() (in module
dingo.gw.inference.visualization), 126

load_supplemental()
(dingo.gw.dataset.waveform_dataset.WaveformDataset
method), 122

load_supplemental()
(dingo.gw.dataset.WaveformDataset method),
42

local_limits_exceeded()
(dingo.core.utils.trainutils.RuntimeLimits
method), 108

log_bayes_factor (dingo.core.result.Result property),
111

log_evidence_std (dingo.core.result.Result property),
111

log_likelihood() (dingo.core.likelihood.Likelihood
method), 109

log_likelihood() (dingo.gw.likelihood.StationaryGaussianGWLikelihood
method), 162

log_likelihood_multi()
(dingo.core.likelihood.Likelihood method),
109

log_likelihood_phase_grid()
(dingo.gw.likelihood.StationaryGaussianGWLikelihood
method), 162

log_prob() (dingo.core.nn.nsf.FlowWrapper method),
100

log_prob() (dingo.core.samplers.GNPESampler
method), 77

log_prob() (dingo.core.samplers.Sampler method),
114, 115

log_prob() (dingo.gw.inference.gw_samplers.GWSampler
method), 70

lorentzian_eval() (in module
dingo.gw.noise.synthetic.utils), 129

LossInfo (class in dingo.core.utils.trainutils), 107
ls() (in module dingo.gw.ls_cli), 163

M
main() (in module dingo.core.utils.pt_to_hdf5), 105
main() (in module dingo.gw.dataset.generate_dataset),

120
main() (in module dingo.gw.dataset.generate_dataset_dag),

121
main() (in module dingo.gw.importance_sampling.importance_weights),

123
main() (in module dingo.gw.likelihood), 163
main() (in module dingo.gw.noise.synthetic.generate_dataset),

128
main() (in module dingo.pipe.data_generation), 170

main() (in module dingo.pipe.dingo_result), 170
main() (in module dingo.pipe.importance_sampling),

170
main() (in module dingo.pipe.main), 170
main() (in module dingo.pipe.plot), 171
main() (in module dingo.pipe.sampling), 171
MainInput (class in dingo.pipe.main), 170
max_idx (dingo.gw.domains.Domain property), 152
max_idx (dingo.gw.domains.FrequencyDomain prop-

erty), 153
max_idx (dingo.gw.domains.TimeDomain property), 155
mean_std() (dingo.gw.prior.BBHExtrinsicPriorDict

method), 164
merge() (dingo.core.result.Result class method), 111
merge() (dingo.gw.result.Result class method), 80
merge_datasets() (in module dingo.gw.dataset.utils),

121
merge_datasets() (in module dingo.gw.noise.utils),

131
merge_datasets_cli() (in module

dingo.gw.dataset.utils), 121
merge_datasets_cli() (in module

dingo.gw.noise.utils), 131
MergeNode (class in dingo.pipe.nodes.merge_node), 168
metadata (dingo.core.result.Result property), 111
metadata (dingo.core.samplers.Sampler attribute), 115
min_idx (dingo.gw.domains.Domain property), 152
min_idx (dingo.gw.domains.FrequencyDomain prop-

erty), 153
min_idx (dingo.gw.domains.TimeDomain property), 155
model (dingo.core.samplers.Sampler attribute), 115
model_to_device() (dingo.core.models.posterior_model.PosteriorModel

method), 95
module

dingo, 172
dingo.asimov, 91
dingo.core, 116
dingo.core.dataset, 109
dingo.core.density, 93
dingo.core.density.interpolation, 91
dingo.core.density.nde_settings, 93
dingo.core.density.unconditional_density_estimation,

93
dingo.core.likelihood, 109
dingo.core.models, 96
dingo.core.models.posterior_model, 94
dingo.core.multiprocessing, 110
dingo.core.nn, 103
dingo.core.nn.enets, 96
dingo.core.nn.nsf, 100
dingo.core.result, 110
dingo.core.samplers, 113
dingo.core.transforms, 116
dingo.core.utils, 109

190 Index

dingo-gw

dingo.core.utils.condor_utils, 103
dingo.core.utils.gnpeutils, 104
dingo.core.utils.logging_utils, 104
dingo.core.utils.misc, 104
dingo.core.utils.plotting, 104
dingo.core.utils.pt_to_hdf5, 105
dingo.core.utils.torchutils, 105
dingo.core.utils.trainutils, 107
dingo.gw, 167
dingo.gw.conversion, 118
dingo.gw.conversion.spin_conversion, 116
dingo.gw.data, 119
dingo.gw.data.data_download, 118
dingo.gw.data.data_preparation, 118
dingo.gw.data.event_dataset, 119
dingo.gw.dataset, 123
dingo.gw.dataset.generate_dataset, 119
dingo.gw.dataset.generate_dataset_dag,

121
dingo.gw.dataset.utils, 121
dingo.gw.dataset.waveform_dataset, 121
dingo.gw.domains, 152
dingo.gw.download_strain_data, 156
dingo.gw.gwutils, 157
dingo.gw.importance_sampling, 123
dingo.gw.importance_sampling.diagnostics,

123
dingo.gw.importance_sampling.importance_weights,

123
dingo.gw.inference, 126
dingo.gw.inference.gw_samplers, 123
dingo.gw.inference.inference_pipeline,

125
dingo.gw.inference.visualization, 126
dingo.gw.injection, 158
dingo.gw.likelihood, 160
dingo.gw.ls_cli, 163
dingo.gw.noise, 132
dingo.gw.noise.asd_dataset, 129
dingo.gw.noise.asd_estimation, 130
dingo.gw.noise.generate_dataset, 130
dingo.gw.noise.generate_dataset_dag, 131
dingo.gw.noise.synthetic, 129
dingo.gw.noise.synthetic.asd_parameterization,

126
dingo.gw.noise.synthetic.asd_sampling,

128
dingo.gw.noise.synthetic.generate_dataset,

128
dingo.gw.noise.synthetic.utils, 129
dingo.gw.noise.utils, 131
dingo.gw.prior, 163
dingo.gw.result, 165
dingo.gw.SVD, 150

dingo.gw.temporary_debug_utils, 167
dingo.gw.training, 135
dingo.gw.training.train_builders, 132
dingo.gw.training.train_pipeline, 133
dingo.gw.training.train_pipeline_condor,

135
dingo.gw.training.utils, 135
dingo.gw.transforms, 141
dingo.gw.transforms.detector_transforms,

135
dingo.gw.transforms.general_transforms,

137
dingo.gw.transforms.gnpe_transforms, 137
dingo.gw.transforms.inference_transforms,

139
dingo.gw.transforms.noise_transforms, 139
dingo.gw.transforms.parameter_transforms,

140
dingo.gw.waveform_generator, 150
dingo.gw.waveform_generator.frame_utils,

141
dingo.gw.waveform_generator.waveform_generator,

141
dingo.gw.waveform_generator.wfg_utils,

148
dingo.pipe, 172
dingo.pipe.dag_creator, 169
dingo.pipe.data_generation, 169
dingo.pipe.default_settings, 170
dingo.pipe.dingo_result, 170
dingo.pipe.importance_sampling, 170
dingo.pipe.main, 170
dingo.pipe.nodes, 169
dingo.pipe.nodes.generation_node, 168
dingo.pipe.nodes.importance_sampling_node,

168
dingo.pipe.nodes.merge_node, 168
dingo.pipe.nodes.pe_summary_node, 169
dingo.pipe.nodes.plot_node, 169
dingo.pipe.nodes.sampling_node, 169
dingo.pipe.parser, 171
dingo.pipe.plot, 171
dingo.pipe.sampling, 171
dingo.pipe.utils, 172

ModuleMerger (class in dingo.core.nn.enets), 98
modulus_check() (in module

dingo.gw.dataset.generate_dataset_dag),
121

multiply() (dingo.gw.transforms.gnpe_transforms.GNPEBase
method), 137

N
n_eff (dingo.core.result.Result property), 111

Index 191

dingo-gw

NewInterfaceWaveformGenerator (class in
dingo.gw.waveform_generator.waveform_generator),
141

noise_std (dingo.gw.domains.Domain property), 152
noise_std (dingo.gw.domains.FrequencyDomain prop-

erty), 33, 153
noise_std (dingo.gw.domains.PCADomain property),

155
noise_std (dingo.gw.domains.TimeDomain property),

155
num_iterations (dingo.core.samplers.GNPESampler

property), 77, 114
num_samples (dingo.core.result.Result property), 112

O
output_dim (dingo.core.nn.enets.LinearProjectionRB

property), 98

P
parameter_mean_std()

(dingo.gw.dataset.waveform_dataset.WaveformDataset
method), 122

parameter_subset() (dingo.core.result.Result
method), 112

parameter_subset() (dingo.gw.result.Result method),
81

parameterize_asd_dataset() (in module
dingo.gw.noise.synthetic.asd_parameterization),
127

parameterize_asds_parallel() (in module
dingo.gw.noise.synthetic.asd_parameterization),
127

parameterize_single_psd() (in module
dingo.gw.noise.synthetic.asd_parameterization),
127

parse_args() (in module
dingo.core.density.unconditional_density_estimation),
93

parse_args() (in module dingo.core.utils.pt_to_hdf5),
105

parse_args() (in module
dingo.gw.dataset.generate_dataset), 120

parse_args() (in module
dingo.gw.dataset.generate_dataset_dag),
121

parse_args() (in module
dingo.gw.importance_sampling.importance_weights),
123

parse_args() (in module
dingo.gw.inference.inference_pipeline), 125

parse_args() (in module
dingo.gw.noise.generate_dataset), 130

parse_args() (in module
dingo.gw.noise.synthetic.generate_dataset),

129
parse_args() (in module

dingo.gw.training.train_pipeline), 133
parse_settings_for_raw_data() (in module

dingo.gw.data.data_preparation), 119
PCADomain (class in dingo.gw.domains), 155
pe_spins() (in module

dingo.gw.conversion.spin_conversion), 117
perform_scheduler_step() (in module

dingo.core.utils.torchutils), 106
perturb() (dingo.gw.transforms.gnpe_transforms.GNPEBase

method), 137
pesummary_prior (dingo.gw.result.Result property), 81,

166
pesummary_samples (dingo.gw.result.Result property),

81, 166
PESummaryNode (class in

dingo.pipe.nodes.pe_summary_node), 169
phase_marginalization_kwargs

(dingo.gw.result.Result property), 166
plot_corner() (dingo.core.result.Result method), 112
plot_corner() (dingo.gw.result.Result method), 81
plot_corner_multi() (in module

dingo.core.utils.plotting), 104
plot_diagnostics() (in module

dingo.gw.importance_sampling.diagnostics),
123

plot_log_probs() (dingo.core.result.Result method),
112

plot_log_probs() (dingo.gw.result.Result method), 81
plot_posterior_slice() (in module

dingo.gw.importance_sampling.diagnostics),
123

plot_posterior_slice2d() (in module
dingo.gw.importance_sampling.diagnostics),
123

plot_weights() (dingo.core.result.Result method), 112
plot_weights() (dingo.gw.result.Result method), 81
PlotNode (class in dingo.pipe.nodes.plot_node), 169
PostCorrectGeocentTime (class in

dingo.gw.transforms.inference_transforms),
139

PosteriorModel (class in
dingo.core.models.posterior_model), 94

prepare_log_prob() (in module
dingo.gw.inference.inference_pipeline), 125

prepare_training_new() (in module
dingo.gw.training.train_pipeline), 133

prepare_training_resume() (in module
dingo.gw.training.train_pipeline), 134

print_info() (dingo.core.utils.trainutils.LossInfo
method), 107

print_summary() (dingo.core.result.Result method),
112

192 Index

dingo-gw

print_summary() (dingo.gw.result.Result method), 81
print_validation_summary()

(dingo.gw.SVD.SVDBasis method), 152
priors (dingo.pipe.importance_sampling.ImportanceSamplingInput

property), 170
priors (dingo.pipe.main.MainInput property), 170
ProjectOntoDetectors (class in dingo.gw.transforms),

50
ProjectOntoDetectors (class in

dingo.gw.transforms.detector_transforms),
136

psd_data_path() (in module dingo.gw.noise.utils), 132
pvalue_min (dingo.core.utils.gnpeutils.IterationTracker

property), 104

R
random_injection() (dingo.gw.injection.Injection

method), 71, 160
reconstruct_psds_from_parameters() (in module

dingo.gw.noise.synthetic.utils), 129
recursive_check_dicts_are_equal() (in module

dingo.core.utils.misc), 104
recursive_hdf5_load() (in module

dingo.core.dataset), 109
recursive_hdf5_save() (in module

dingo.core.dataset), 109
RenameKey (class in dingo.core.transforms), 116
RepackageStrainsAndASDS (class in

dingo.gw.transforms), 52
RepackageStrainsAndASDS (class in

dingo.gw.transforms.noise_transforms), 139
reproduction_dict (dingo.gw.transforms.parameter_transforms.SampleExtrinsicParameters

property), 140
request_cpus_importance_sampling

(dingo.pipe.main.MainInput property), 170
reset_event() (dingo.core.result.Result method), 112
reset_event() (dingo.gw.result.Result method), 81
ResetSample (class in

dingo.gw.transforms.inference_transforms),
139

resubmit_condor_job() (in module
dingo.core.utils.condor_utils), 103

Result (class in dingo.core.result), 110
Result (class in dingo.gw.result), 79, 165
result_file (dingo.pipe.nodes.importance_sampling_node.ImportanceSamplingNode

property), 168
result_file (dingo.pipe.nodes.merge_node.MergeNode

property), 168
result_file (dingo.pipe.nodes.sampling_node.SamplingNode

property), 169
rotate_y() (in module

dingo.gw.waveform_generator.frame_utils),
141

rotate_z() (in module
dingo.gw.waveform_generator.frame_utils),
141

run_sampler() (dingo.core.samplers.GNPESampler
method), 77

run_sampler() (dingo.core.samplers.Sampler method),
114, 116

run_sampler() (dingo.gw.inference.gw_samplers.GWSampler
method), 70

run_sampler() (dingo.pipe.importance_sampling.ImportanceSamplingInput
method), 170

run_sampler() (dingo.pipe.sampling.SamplingInput
method), 171

RuntimeLimits (class in dingo.core.utils.trainutils), 107

S
sample() (dingo.core.models.posterior_model.PosteriorModel

method), 95
sample() (dingo.core.nn.nsf.FlowWrapper method), 100
sample() (dingo.gw.noise.synthetic.asd_sampling.KDE

method), 128
sample_and_log_prob()

(dingo.core.nn.nsf.FlowWrapper method),
100

sample_efficiency (dingo.core.result.Result prop-
erty), 112

sample_frequencies (dingo.gw.domains.FrequencyDomain
property), 153

sample_frequencies_torch
(dingo.gw.domains.FrequencyDomain prop-
erty), 153

sample_frequencies_torch_cuda
(dingo.gw.domains.FrequencyDomain prop-
erty), 153

sample_proxies() (dingo.gw.transforms.gnpe_transforms.GNPEBase
method), 138

sample_random_asds()
(dingo.gw.noise.asd_dataset.ASDDataset
method), 130

sample_synthetic_phase() (dingo.gw.result.Result
method), 82, 166

SampleDataset (class in
dingo.core.density.unconditional_density_estimation),
93

SampleExtrinsicParameters (class in
dingo.gw.transforms), 49

SampleExtrinsicParameters (class in
dingo.gw.transforms.parameter_transforms),
140

SampleNoiseASD (class in dingo.gw.transforms), 51
SampleNoiseASD (class in

dingo.gw.transforms.noise_transforms), 139
Sampler (class in dingo.core.samplers), 114
samples (dingo.core.samplers.Sampler attribute), 115

Index 193

dingo-gw

samples_file (dingo.pipe.nodes.sampling_node.SamplingNode
property), 169

sampling_importance_resampling()
(dingo.core.result.Result method), 112

sampling_importance_resampling()
(dingo.gw.result.Result method), 82

sampling_rate (dingo.gw.domains.Domain property),
152

sampling_rate (dingo.gw.domains.FrequencyDomain
property), 33, 153

sampling_rate (dingo.gw.domains.TimeDomain prop-
erty), 155

SamplingInput (class in dingo.pipe.sampling), 171
SamplingNode (class in

dingo.pipe.nodes.sampling_node), 169
save_hdf5() (dingo.pipe.data_generation.DataGenerationInput

method), 169
save_model() (dingo.core.models.posterior_model.PosteriorModel

method), 95
save_model() (in module dingo.core.utils.trainutils),

108
save_training_injection() (in module

dingo.gw.temporary_debug_utils), 167
search_parameter_keys (dingo.core.result.Result

property), 113
SelectStandardizeRepackageParameters (class in

dingo.gw.transforms), 51
SelectStandardizeRepackageParameters (class in

dingo.gw.transforms.parameter_transforms),
140

SEOBNRv4PHM_maximum_starting_frequency() (in
module dingo.gw.waveform_generator.waveform_generator),
144

set_new_range() (dingo.gw.domains.FrequencyDomain
method), 33, 154

set_requires_grad_flag() (in module
dingo.core.utils.torchutils), 106

set_train_transforms() (in module
dingo.gw.training), 52

set_train_transforms() (in module
dingo.gw.training.train_builders), 133

setup_arguments() (dingo.pipe.nodes.generation_node.GenerationNode
method), 168

setup_logger() (in module
dingo.core.utils.logging_utils), 104

setup_mode_array() (dingo.gw.waveform_generator.waveform_generator.WaveformGenerator
method), 147

setup_mode_array() (dingo.gw.waveform_generator.WaveformGenerator
method), 39

signal() (dingo.gw.injection.GWSignal method), 158
signal_m() (dingo.gw.injection.GWSignal method), 159
spin_conversion_phase

(dingo.gw.waveform_generator.waveform_generator.WaveformGenerator
property), 147

split() (dingo.core.result.Result method), 113
split() (dingo.gw.result.Result method), 82
split_dataset_into_train_and_test() (in module

dingo.core.utils.torchutils), 107
split_off_extrinsic_parameters() (in module

dingo.gw.prior), 164
split_time_segments() (in module

dingo.gw.noise.generate_dataset_dag), 131
StandardizeParameters (class in

dingo.gw.transforms.parameter_transforms),
140

StationaryGaussianGWLikelihood (class in
dingo.gw.likelihood), 160

StoreBoolean (class in dingo.pipe.parser), 171
sum_contributions_m() (in module

dingo.gw.waveform_generator.waveform_generator),
148

SVDBasis (class in dingo.gw.SVD), 150
synthetic_phase_kwargs (dingo.gw.result.Result

property), 167

T
t_ref (dingo.gw.result.Result property), 167
taper_td_modes_for_SEOBRNRv5_extra_time() (in

module dingo.gw.waveform_generator.wfg_utils),
149

taper_td_modes_in_place() (in module
dingo.gw.waveform_generator.wfg_utils),
150

td_modes_to_fd_modes() (in module
dingo.gw.waveform_generator.wfg_utils),
150

test_dimensions() (dingo.core.nn.enets.LinearProjectionRB
method), 98

test_epoch() (in module
dingo.core.models.posterior_model), 96

time_delay_from_geocenter() (in module
dingo.gw.transforms.detector_transforms),
136

time_marginalization_kwargs
(dingo.gw.result.Result property), 167

time_translate_data() (dingo.gw.domains.Domain
method), 152

time_translate_data()
(dingo.gw.domains.FrequencyDomain
method), 33, 154

time_translate_data()
(dingo.gw.domains.TimeDomain method),
155

TimeDomain (class in dingo.gw.domains), 155
TimeShiftStrain (class in

dingo.gw.transforms.detector_transforms),
136

194 Index

dingo-gw

to_dictionary() (dingo.core.dataset.DingoDataset
method), 109

to_file() (dingo.core.dataset.DingoDataset method),
109

to_hdf5() (dingo.core.samplers.Sampler method), 114,
116

to_result() (dingo.core.samplers.GNPESampler
method), 77

to_result() (dingo.core.samplers.Sampler method),
114, 116

to_result() (dingo.gw.inference.gw_samplers.GWSampler
method), 70

torch_detach_to_cpu() (in module
dingo.core.utils.torchutils), 107

ToTorch (class in dingo.gw.transforms.inference_transforms),
139

train() (dingo.core.models.posterior_model.PosteriorModel
method), 95

train_condor() (in module
dingo.gw.training.train_pipeline_condor),
135

train_epoch() (in module
dingo.core.models.posterior_model), 96

train_local() (in module
dingo.gw.training.train_pipeline), 134

train_stages() (in module
dingo.gw.training.train_pipeline), 134

train_svd_basis() (in module
dingo.gw.dataset.generate_dataset), 120

train_unconditional_density_estimator() (in
module dingo.core.density.unconditional_density_estimation),
93

train_unconditional_flow()
(dingo.core.result.Result method), 113

train_unconditional_flow()
(dingo.gw.result.Result method), 83

U
unconditional_model (dingo.core.samplers.Sampler

attribute), 115
UnpackDict (class in dingo.gw.transforms), 52
UnpackDict (class in dingo.gw.transforms.general_transforms),

137
update() (dingo.core.utils.gnpeutils.IterationTracker

method), 104
update() (dingo.core.utils.trainutils.AvgTracker

method), 107
update() (dingo.core.utils.trainutils.LossInfo method),

107
update() (dingo.gw.domains.Domain method), 152
update() (dingo.gw.domains.FrequencyDomain

method), 34, 154
update_data() (dingo.gw.domains.FrequencyDomain

method), 34, 154

update_domain() (dingo.gw.dataset.waveform_dataset.WaveformDataset
method), 122

update_domain() (dingo.gw.dataset.WaveformDataset
method), 42

update_domain() (dingo.gw.noise.asd_dataset.ASDDataset
method), 130

update_prior() (dingo.gw.result.Result method), 83,
167

update_timer() (dingo.core.utils.trainutils.LossInfo
method), 107

W
WaveformDataset (class in dingo.gw.dataset), 41
WaveformDataset (class in

dingo.gw.dataset.waveform_dataset), 121
WaveformGenerator (class in

dingo.gw.waveform_generator), 36
WaveformGenerator (class in

dingo.gw.waveform_generator.waveform_generator),
144

whiten (dingo.gw.injection.GWSignal property), 159
WhitenAndScaleStrain (class in dingo.gw.transforms),

51
WhitenAndScaleStrain (class in

dingo.gw.transforms.noise_transforms), 139
WhitenFixedASD (class in

dingo.gw.transforms.noise_transforms), 140
WhitenStrain (class in

dingo.gw.transforms.noise_transforms), 140
window_factor (dingo.gw.domains.FrequencyDomain

property), 154
write_complete_config_file() (in module

dingo.pipe.main), 170
write_history() (in module

dingo.core.utils.trainutils), 4, 108
write_pesummary() (dingo.core.samplers.Sampler

method), 116

Index 195

	Installation
	Standard
	Pip
	Conda

	Development
	Documentation
	Cleanup

	Overview
	Basic workflow
	Command-line interface
	Summary of commands
	File types

	GNPE

	Quickstart tutorial
	Generate training data
	Waveforms
	Noise ASDs

	Training
	Inference

	Toy Example
	Step 1 Generating a waveform dataset
	Step 2 Generating the Amplitude Spectral Density (ASD) dataset
	Step 3 Training the network
	Step 4 Doing Inference

	NPE Model (production)
	Step 1 Generating a Waveform Dataset
	Step 2 Generating an ASD dataset
	Step 3 Training the network
	Step 4 Doing Inference

	GNPE model (production)
	Step 1 Generating a Waveform Dataset
	Step 2 Generating an ASD dataset
	Step 3 Training the network
	Step 4 Doing Inference

	Inference on an injection
	Introduction to neural posterior estimation
	Normalizing flows
	Training

	Code design
	Reproducibility
	Settings
	Random seeds
	Unique identifiers for models

	Code re-use
	core and gw packages
	Data transforms
	Data structures

	Command-line scripts

	Generating waveforms
	Data domain
	Waveform generator
	Waveform modes

	Building a waveform dataset
	The WaveformDataset class
	Generating a simple dataset
	Automated dataset construction
	Configuration
	Command-line interface

	Data pre-processing
	GW transform sequence
	Extrinsic parameters
	Detector waveforms
	Noise
	Output

	Building the transforms

	Detector noise
	ASD dataset
	Generating an ASDDataset
	dingo_generate_asd_dataset
	dingo_generate_synthetic_asd_dataset

	Data conditioning

	Neural network architecture
	Neural spline flow with SVD compression
	Embedding network
	Flow

	Training
	Settings file
	data_settings
	model
	training
	local

	Command-line scripts
	dingo_train
	dingo_train_condor

	Output
	Modifying a checkpoint

	Inference
	The Sampler class
	Injections

	GNPE
	Description of method
	Gibbs + NPE
	Group-equivariant NPE

	Usage
	Training
	Inference

	The GNPESampler class
	Attributes (beyond those of Sampler)

	The Result class
	Density recovery
	Synthetic phase
	Configuration

	Importance sampling
	Plotting

	dingo_pipe
	Data generation
	Sampling
	Importance sampling
	Calibration marginalization

	Plotting
	Additional options

	dingo
	dingo package
	Subpackages
	dingo.asimov package
	Submodules
	dingo.asimov.asimov module
	Module contents

	dingo.core package
	Subpackages
	dingo.core.density package
	Submodules
	dingo.core.density.interpolation module
	dingo.core.density.nde_settings module
	dingo.core.density.unconditional_density_estimation module
	Module contents
	dingo.core.models package
	Submodules
	dingo.core.models.posterior_model module
	Module contents
	dingo.core.nn package
	Submodules
	dingo.core.nn.enets module
	Module specs
	Module specs
	Module specs
	Module specs
	dingo.core.nn.nsf module
	Module contents
	dingo.core.utils package
	Submodules
	dingo.core.utils.condor_utils module
	dingo.core.utils.gnpeutils module
	dingo.core.utils.logging_utils module
	dingo.core.utils.misc module
	dingo.core.utils.plotting module
	dingo.core.utils.pt_to_hdf5 module
	dingo.core.utils.torchutils module
	dingo.core.utils.trainutils module
	Module contents

	Submodules
	dingo.core.dataset module
	dingo.core.likelihood module
	dingo.core.multiprocessing module
	dingo.core.result module
	dingo.core.samplers module
	Attributes (beyond those of Sampler)

	dingo.core.transforms module
	Module contents

	dingo.gw package
	Subpackages
	dingo.gw.conversion package
	Submodules
	dingo.gw.conversion.spin_conversion module
	Module contents
	dingo.gw.data package
	Submodules
	dingo.gw.data.data_download module
	dingo.gw.data.data_preparation module
	dingo.gw.data.event_dataset module
	Module contents
	dingo.gw.dataset package
	Submodules
	dingo.gw.dataset.generate_dataset module
	dingo.gw.dataset.generate_dataset_dag module
	dingo.gw.dataset.utils module
	dingo.gw.dataset.waveform_dataset module
	Module contents
	dingo.gw.importance_sampling package
	Submodules
	dingo.gw.importance_sampling.diagnostics module
	dingo.gw.importance_sampling.importance_weights module
	Module contents
	dingo.gw.inference package
	Submodules
	dingo.gw.inference.gw_samplers module
	Attributes (beyond those of Sampler)
	dingo.gw.inference.inference_pipeline module
	dingo.gw.inference.visualization module
	Module contents
	dingo.gw.noise package
	Subpackages
	dingo.gw.noise.synthetic package
	Submodules
	dingo.gw.noise.synthetic.asd_parameterization module
	dingo.gw.noise.synthetic.asd_sampling module
	Sample a synthetic ASD dataset from the fitted KDEs
	dingo.gw.noise.synthetic.generate_dataset module
	dingo.gw.noise.synthetic.utils module
	Module contents
	Submodules
	dingo.gw.noise.asd_dataset module
	dingo.gw.noise.asd_estimation module
	dingo.gw.noise.generate_dataset module
	dingo.gw.noise.generate_dataset_dag module
	dingo.gw.noise.utils module
	Module contents
	dingo.gw.training package
	Submodules
	dingo.gw.training.train_builders module
	dingo.gw.training.train_pipeline module
	dingo.gw.training.train_pipeline_condor module
	dingo.gw.training.utils module
	Module contents
	dingo.gw.transforms package
	Submodules
	dingo.gw.transforms.detector_transforms module
	dingo.gw.transforms.general_transforms module
	dingo.gw.transforms.gnpe_transforms module
	Parameters:
	dingo.gw.transforms.inference_transforms module
	dingo.gw.transforms.noise_transforms module
	dingo.gw.transforms.parameter_transforms module
	Module contents
	dingo.gw.waveform_generator package
	Submodules
	dingo.gw.waveform_generator.frame_utils module
	dingo.gw.waveform_generator.waveform_generator module
	dingo.gw.waveform_generator.wfg_utils module
	Module contents

	Submodules
	dingo.gw.SVD module
	dingo.gw.domains module
	dingo.gw.download_strain_data module
	dingo.gw.gwutils module
	dingo.gw.injection module
	dingo.gw.likelihood module
	dingo.gw.ls_cli module
	dingo.gw.prior module
	dingo.gw.result module
	dingo.gw.temporary_debug_utils module
	Module contents

	dingo.pipe package
	Subpackages
	dingo.pipe.nodes package
	Submodules
	dingo.pipe.nodes.generation_node module
	Parameters:
	dingo.pipe.nodes.importance_sampling_node module
	dingo.pipe.nodes.merge_node module
	dingo.pipe.nodes.pe_summary_node module
	dingo.pipe.nodes.plot_node module
	dingo.pipe.nodes.sampling_node module
	Module contents

	Submodules
	dingo.pipe.dag_creator module
	dingo.pipe.data_generation module
	dingo.pipe.default_settings module
	dingo.pipe.dingo_result module
	dingo.pipe.importance_sampling module
	dingo.pipe.main module
	dingo.pipe.parser module
	dingo.pipe.plot module
	dingo.pipe.sampling module
	dingo.pipe.utils module
	Module contents

	Module contents

	References
	Contact
	Indices and tables
	Bibliography
	Python Module Index
	Index

